Корпускулярно-волновая природа излучения
Полезно отметить, что в течение первых десятилетий 20-го века поглощение и эмиссия и рассеяние излучения наблюдались в виде однофотонных процессов. Позднее с открытием нелинейной оптики и созданием мощных лазерных источников излучения были открыты многофотонные процессы.
3.1. Энергия e поглощаемого или испускаемого фотона - кванта электромагнитного поля прямо пропорциональна частоте излучения n, обратно пропорциональна длине волны l, прямо пропорциональна волновому числу 1/l и определяется известной формулой Планка:
(3.1)
Это соотношение позволяет для отсчёта энергии использовать и единицы измерения частоты (1 герц = с-1 или кратные ему величины 1 килогерц =103 герц, или1ме-гагерц =106 герц, или 1 гигагагерц =109 герц и т.д.), и единицы измерения волнового числа (чаще всего обратные сантиметры [1/l] = см-1). Эти разные шкалы отсчёта энергии используются в различных областях экспериментальной спектроскопии.
Так, например, в оптической спектроскопии, изучающей электронные переходы в атомах и молекулах, используются обратные сантиметры (см-1), в радиоспектроскопии, изучающей процессы переориентации векторов магнитных моментов электронов или ядер (спиновых векторов ядер или электронов), обычно применяет единицы частоты - мегагерцы или гигагерцы (мГц, гГц,). В спектроскопии высоких энергий, использующей рентгеновское или гамма-излучение, обычной единицей является электроновольт (эВ).
3.2. Уровни квантовых систем являются элементами одномерных массивов - энергетических спектров и могут быть пронумерованы каким-либо дискретным числовым множеством, чаще всего
, где квантор V означает «или»
. (3.2)
Числа-номера уровней называются квантовыми числами. Они образуют массивы. Дис-танции между уровнями образуют уже двумерные упорядоченные массивы - матрицы:
. (3.3)
Каждой паре уровней соответствует два перехода. Энергии поглощаемого и испускаемого квантов (поглощаемого или испускаемого фотона) почти одинаковы, и эту пару переходов удобно изобразить символом или можно просто парой индексов, которые в зависимости от направления перехода чередуются как nm (переход n ® m) или как mn (переход m ® n).
3.3. Поглощение или испускание фотона системой по закону сохранения энергии связано с её переходами вдоль лесенки дискретных уровней энергии, и поэтому каждому из возможных переходов отвечает своя частота или своё волновое число. Частоты, волновые числа и длины волн, порождаемые этими квантовыми переходами, характеризуют электромагнитный спектр системы. Они также образуют матрицы и могут быть пронумерованы индексами:
.(3.4)
Смотрите также
Синтез ацетилферроцена
Ферроцен
(дициклопентадиенилжелезо) - металлорганическое соединение железа с пентагональной
антипризматической «сэндвичевой» структурой. Благодаря своему
высокосимметричному сэндвичевому ст ...
Алхимия как культурный феномен арабского и европейского средневековья
Алхимия осталась
феноменом Средневековья, тупиковой ветвью познания. Её долго обвиняли в том,
что она – лженаука, но во многом благодаря ей появилась истинная наука – химия.
В алхимиках же ...
Железо и его роль
Герою знаменитого романа
Даниэля Дефо повезло. Корабль, с которого он спасся, сидел на мели совсем
недалеко от острова. Робинзон сумел погрузить на плот все необходимое и
благополучно переп ...