Однородные функции. Уравнение Гиббса-Дюгема.

Полезные материалы / Основы термодинамики / Однородные функции. Уравнение Гиббса-Дюгема.

Функция многих переменных, например F(x,y,z), называется однородной функцией порядка k, если она обладает следующим свойством:

F (tx, ty, tz) = tk F (x, y, z),

(например, F = x3 +x2y + y2x + z3 является однородной функцией 3-его порядка). Однородные функции обладают следующим свойством (теорема Эйлера): .

Доказательство теоремы Эйлера следующее:

Если f = f (x1, x2,…xn ), а каждое xi = φ(t), то .

Пусть F (x, y, z ) - однородная функция порядка k, положим x = tα, y=tβ, z = tγ, тогда .

Продифференцируем по t: .

Положим t = 1,тогда α = x, β = y, γ = z и , что и требовалось доказать.

Если температура и давление постоянны, то энергия Гиббса является функцией только числа молей компонентов: G = G (n1, n2, …nk ) и легко сообразить, что она является однородной функцией первого порядка относительно числа молей компонентов и по теореме Эйлера (k = 1):

.

После дифференцирования имеем: .

Но , а при p, T =const .

Следовательно, .

Это уравнение называется уравнением Гиббса-Дюгема и широко применяется в термодинамике растворов поскольку дает возможность рассчитать dμi i –ого компонента, если известны изменения химических потенциалов всех остальных компанентов в изобарно-изотермическом процессе. Для бинарного раствора .

Разделив на сумму п1 +п2, получим: .

Смотрите также

Системы химического мониторинга
...

Идеи алхимии
Алхимия (позднелат. alchemia, alchimia, alchymia) - своеобразное явление культуры, особенно широко распространённое в Западной Европе в эпоху позднего средневековья. Слово «алхимия» произво ...

Основы термодинамики
...