Супрамолекулярная химия.
Супрамолекулярная химия – одна из самых молодых и в то же время бурно развивающихся областей химии. За 25 – 30 лет своего существования она уже успела пройти ряд важных этапов, но в то же время основные идеи и понятия этой дисциплины еще не являются общеизвестными и общепринятыми
Термин «супрамолекулярная химия» и основные понятия этой дисциплины были введены французским ученым Ж.-М. Леном в 1978 г. в рамках развития и обобщения более ранних работ (в частности, в 1973 г. в его трудах появился термин «супермолекула»). Пример определения, данного Леном: «супрамолекулярная химия – это «химия за пределами молекулы», изучающая структуру и функции ассоциаций двух или более химических частиц, удерживаемых вместе межмолекулярными силами». Во многих случаях компоненты, образующие супрамолекулярные системы, можно называть (по аналогии с системами, рассматриваемыми в молекулярной биологии) молекулярными рецептором и субстратом, причем последний является меньшим по размеру компонентом, связывания которого и необходимо добиться.
Объекты супрамолекулярной химии, супермолекулы, обладают такой же определенностью, как и составляющие их отдельные молекулы. Согласно Лену, супрамолекулярную химию можно разбить на две широкие, частично налагающиеся друг на друга области:
· химию супермолекул – четко обозначенных олигомолекулярных частиц, возникающих в результате межмолекулярной ассоциации нескольких компонентов – рецептора и его субстрата (субстратов) и строящихся по принципу молекулярного распознавания;
· химию молекулярных ансамблей – полимолекулярных систем, которые образуются в результате спонтанной ассоциации неопределенного числа компонентов с переходом в специфическую фазу, имеющую более или менее четко обозначенную микроскопическую организацию и зависимые от ее природы характеристики (например, мембраны, везикулы, мицеллы).
Как считает Ж.-М. Лен, три понятия – фиксация (связывание), распознавание и координация – заложили фундамент супрамолекулярной химии. Межмолекулярные взаимодействия в супрамолекулярных образованьях слабее, чем ковалентные связи, так что супрамолекулярные ассоциаты менее стабильны термодинамически, более лабильны кинетически и более гибки динамически, чем молекулы. Основные функции супермолекул: молекулярное распознавание, превращение (катализ) и перенос. Функциональные супермолекулы наряду с организованными полимолекулярными ансамблями и фазами могут быть использованы для создания молекулярных и супрамолекулярных устройств.
Последние достижения в супрамолекулярной химии и наиболее перспективные области ее использования связаны с процессами молекулярного распознавания и образования новых структур за счет так называемых «самопроцессов».
При синтезе сложных ковалентных частиц супрамолекулярная химия может быть использована для нужного размещения компонентов, например путем самосборки. Это открывает новые возможности в области синтеза сложных систем, причем в последние годы это направление стало одним из ведущих.
Еще одной перспективной областью развития супрамолекулярной химии является создание молекулярных и супрамолекулярных устройств. Можно выделить фотонные, электронные или ионные устройства, в зависимости от того, являются ли компоненты фотоактивными, электроактивными или ионоактивными соответственно, т.е. участвуют в поглощении или испускании фотонов, являются донорами или акцепторами электронов или участвуют в ионном обмене. Можно выделить два основных типа компонентов, входящих в такие устройства: активные компоненты, которые осуществляют заданную операцию (принимают, отдают или передают фотоны, электроны, ионы и т.д.), и структурные компоненты, которые участвуют в создании супрамолекулярной архитектуры, задавая необходимое пространственное расположение активных компонентов, в частности, за счет процессов распознавания. Кроме того, в состав устройства могут быть введены вспомогательные компоненты, назначение которых состоит в модифицировании свойств активных и структурных компонентов. Главным является то, что в отличие от обычных материалов компоненты и состоящие из них устройства должны выполнять свои функции на молекулярном и супрамолекулярном уровнях. Включение молекулярных устройств в супрамолекулярные системы позволяет получать функциональные супермолекулы или ансамбли (слои, пленки, мембраны и т.д.).
Смотрите также
Третий закон термодинамики
Понятие химического сродства. Известно, что многие
вещества реагируют друг с другом легко и быстро, другие вещества реагируют с
трудом, а третьи – не реагируют. Исходя из этого, вывели предположени ...
Сурьма
Сурьма (лат. Stibium), Sb, химический элемент V группы периодической системы Менделеева; атомный
номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым
оттенка в природе ...
Углерод
Углерод
(лат. Carboneum), С - химический элемент IV группы периодической
системы Менделеева. Известны два стабильных изотопа 12С (98,892 %) и
13С (1,108 %).
Углерод известен с глубокой ...