Информативность концепций критического параметра упаковки и спонтанной кривизны

Полезные материалы / Полиоксиэтиленовые цепи / Информативность концепций критического параметра упаковки и спонтанной кривизны
Страница 1

Рассмотрим концепции критического параметра упаковки и спонтанной кривизны для описания принципов самоорганизации ПАВ. Безразмерный критический параметр упаковки или число ПАВ определяется объемом гидрофобной части молекулы ПАВ, деленным на произведение площади полярной группы и длины вытянутой молекулы ПАВ. Спонтанная кривизна пленки ПАВ считается положительной, если она искривлена в сторону гидрофобного домена.

Упрощенные фазовые диаграммы систем НПАВ - вода для НПАВ с 12 атомами углерода в алкильной цепи и различным числом оксиэтиленовых групп. Обозначения mic, rev mic и spo относятся к фазам изотропных растворов, a hex, lam, cubm и cubb соответственно обозначают гексагональную, ламелярную и дискретную и биконтинуальную кубические жидкокристаллические фазы.

Последовательность образующихся самоорганизованных структур свидетельствует о том, что число НПАВ постепенно увеличивается с ростом температуры. Это можно объяснить только уменьшением площади полярной группы при увеличении температуры. Таким образом, полярные группы более плотно упаковываются на поверхности агрегата при повышенных температурах. Это согласуется с уменьшением гидратации полярных групп при увеличении температуры. Аналогичным образом уменьшается с ростом температуры и спонтанная кривизна.

Так как необычные температурные зависимости специфичны для всего класса неионных оксиэтилированных ПАВ, постараемся разобраться в механизме, ответственном за это. С увеличением температуры уменьшается взаимодействие между

оксиэтиленовыми группами и молекулами воды

изменяется от положительной до отрицательной. При некоторой промежуточной температуре спонтанная кривизна становится равной нулю; в этом состоянии НПАВ считается "сбалансированным". Такое изменение спонтанной кривизны с температурой свидетельствует о том, что вода является хорошим растворителем для полярных групп НПАВ при низких температурах, но взаимодействие оксиэтиленовых групп с водой становится невыгодным при повышении температуры

Для фазовых диаграмм оксиэтилированных ПАВ и полимеров характерна кривая растворимости с нижней критической точкой. Отсюда вытекает, что на эффективное взаимодействие между молекулами растворенного вещества сильно влияет температура, и с ростом температуры отталкивание сменяется притяжением. Это, в свою очередь, может отражать изменения взаимодействий между молекулами растворенного вещества, растворенного вещества и растворителя, молекулами растворителя или комбинацию таких изменений. Экспериментально подтверждены все изменения, однако до сих пор у исследователей нет согласия относительно эффекта, контролирующего состояние системы. Механизм, связанный с взаимодействиями вода - вода, который отражает температурное изменение структуры воды вблизи оксиэтиленовых групп, маловероятен, поскольку обсуждаемые явления наблюдаются и в других растворителях. Предложена также другая модель, отражающая изменение сетки водородных связей между молекулами воды и эфирными атомами кислорода НПАВ. Представляет интерес проанализировать модель, основанную на влиянии температуры на изменение конформации молекул НПАВ, поскольку эта модель имеет большую предсказательную силу.

Полиоксиэтиленовая цепь может существовать во множестве конформационных состояний, характеризующихся различными энергиями. Конформация оксиэтиленовой группы относительно связи C-C и конформация относительно связи C-O обладает наименьшей энергией среди всех конформеров. Такая низкоэнергетическая конформация характеризуется большим дипольным моментом и будет доминировать при низких температурах. В то же время у такой конформации небольшой статистический вес. С увеличением температуры будут реализовываться другие конформации с большим статистическим весом. Эти конформации имеют меньший или нулевой дипольный момент, как, например, анти-анти-анти-конформация.

Следовательно, в результате конформационных изменений полиоксиэтиленовые цепи при повышении температуры будут постепенно становиться менее полярными, что приведет к невыгодности их взаимодействия с молекулами воды и, как следствие, к их дегидратации. В то же время взаимодействие оксиэтиленовых групп между собой станет энергетически более выгодным, что приведет к более плотной упаковке полярных групп в агрегатах молекул НПАВ, а также к более ярко выраженной склонности к фазовому разделению в более концентрированной фазе. Последовательность самоорганизованных структур при повышении температуры также является логическим следствием уменьшения полярности окси-этильных групп. Подобные представления, как будет показано ниже, применимы для объяснения многих экспериментальных данных, например для объяснения увеличения адсорбции гомополимеров, сополимеров и ПАВ при повышении температуры вследствие ухудшения свойств растворителя. Независимо от принятой модели, температурные эффекты неионогенных полимеров и НПАВ удобнее всего анализировать на основе представлений о том, что вода является хорошим растворителем для оксиэтиленовых групп при низких температурах и плохим растворителем при высоких. Таким образом, мы можем эффективно регулировать взаимодействие растворенное вещество - растворитель при изменении температуры.

Страницы: 1 2

Смотрите также

Галлий
Галлий 31 Ga 3 18 8 2 ГАЛЛИЙ 69,72 4 ...

Поиск структурно-химической информации в Internet
1.а)  Дифракционные методы-рентгеноструктурный анализ и нейронография-как важнейшие источники структурно-химической информации.        б) Их основы, возможности и ограничения.    в) ...

Основы теории и основные понятия процесса хроматографического разделения
Процесс хроматографического разделения очень сложен, тем не менее, его отдельные стадии могут быть смоделированы и представлены в виде уравнений, достаточно точно и верно отражающих реальный ...