Получение чистых цветных металлов
В частности, по химической реакции
TiCl4 + 2Mg = Ti + 2MgCl2
на подавляющем большинстве заводов получают титан. А вот рядом с нами в поселке Донском на химико-металлургическом заводе (теперь это химико-металлургическая фабрика комбината им. Ильича) титан получают гораздо более чистым, чем при хлорировании. Для этого вместо хлора используют йод. К сожалению, получаемый очень чистый титан имеет высокую цену, из-за чего его производство сейчас приостановлено, что является дополнительным подтверждением сделанного ранее вывода о необходимости экономического критерия выбора методов очистки.
Но вернемся к электролизу. Он помогает металлургам и в получении алюминия из расплавленного соединения металла с кислородом.
Очень сложную задачу поставил в свое время перед металлургами этот важнейший из цветных металлов. Его рудный концентрат – глинозем (окись алюминия) – плавится при очень высокой температуре – две с лишним тысячи градусов. Почти на 10000 выше точки плавления меди. Чтобы понизить температуру плавления, пришлось искусственно понижать концентрацию алюминия в электролитической ванне – растворять глинозем в расплавленном минерале криолите. Точка плавления раствора чуть ниже 10000С. А это уже устраивает металлургов. Правда, природного криолита на земле так мало, что минерал этот приходится изготовлять искусственно. Но и это все равно дешевле, чем каждый раз нагревать чистый глинозем.
В раскаленном растворе молекулы глинозема распадаются на составные части – атомы алюминия и атомы кислорода. Электрический ток захватывает атомы алюминия и транспортирует их на катод. В данном случае катодом служит дно самой ванны с глиноземно-криолитовым расплавом.
На примере получения чистого алюминия показана решающая роль химии в получении чистого алюминия. В частности, специалистам в области химии пришлось: 1) создать новый материал – криолит; 2) создать новую смесь «глинозем+криолит»; 3)создать новую технологию извлечения алюминия из указанной выше смеси.
Титан и магний, кальций и бериллий, и многие другие металлы часто получают с помощью электролиза, разлагая их расплавленные соли. Но для того, чтобы сделать эти соли жидкими, опять требуются высокие температуры.
Однако металлурги в ряде случаев умеют обходиться без такого сильного нагрева. Кроме пирометаллургии, существует гидрометаллургия. Тут металл также переводится в жидкость, но не огнем, а с помощью химического растворителя. Им могут оказаться и просто вода, и растворы кислот, щелочей, солей, и сложные органические жидкости.
Извлечь чистый металл из раствора его соединения сравнительно легко. В одних случаях пускают в ход электролиз. В других прибегают к обменным химическим реакциям. Вновь основная заслуга в очистке материала принадлежит химии.
Если опустить в жидкий медный купорос кусок железа, хотя бы старое бритвенное лезвие, на нем начнет осаждаться медь. В обмен в раствор уходят ионы железа. Тот же по существу процесс идет в заводских масштабах на многих предприятиях, получающих медь.
Особенно широко применяется гидрометаллургия при переработке комплексных руд. В нашей стране есть комбинаты, которые из одного месторождения добывают 8, 11, 14 химических элементов. А химики Германии на уникальном месторождении – Мандсфельдских нефтяных сланцах – получают даже сразу 25 элементов. Когда в каждом кубическом сантиметре руды есть, скажем, и марганец, и кобальт, и молибден, и еще добрый десяток ценнейших элементов, куда легче отделить металлы в целом от пустой породы, чем друг от друга. И вот рудный концентрат поочередно обрабатывается сильными реактивами. Стремятся к тому, чтобы в каждой жидкости растворились соединения только одного металла, выделить который уже не составляет большого труда.
Что касается гидропроцессов, используемых для очистки и получения чистых материалов, особый интерес представляют ионообменные процессы, осуществляемые с помощью ионообменных смол.
Смотрите также
Билеты по химии органика и неорганика
...
Валентность и степень окисления
В начале 19 века Дж. Дальтоном был
сформулирован закон кратных отношений, из которого следовало, что каждый атом
одного элемента может соединяться с одним, двумя, тремя и т.д. атомами другог ...
Металлы и сплавы в химии и технике
Химические
элементы – это элементы образующие в свободном состоянии простые вещества с
металлической связью. Из 110 известных химических элементов 88-металлы и только
22-неметаллы.
Такие ...