Реагенты и процессы

Страница 1

Реагенты в СВС процессах используются в виде тонкодисперсных порошков, тонких пленок, жидкостей и газов. Наиболее распространены два типа систем: смеси порошков (спрессованные или насыпной плотности) и гибридные системы газ-порошок (или спрессованный агломерат). Известны СВС-процессы и в системах: порошок-жидкость, газ-взвесь, пленка-пленка, газ-газ. Главные требования к структуре исходной системы - обеспечение условий для эффективного взаимодействия реагентов. Шихта в СВС-процессах может находиться в вакууме, на открытом воздухе, в инертном или реагирующем газе под давлением.

В создании СВС системы могут участвовать все химически активные при высоких температурах вещества в качестве реагентов (химические элементы, индивидуальные соединения, многофазные структуры) и инертные вещества в качестве наполнителей или разбавителей.

Наиболее популярные реагенты: H2, B, Al, C, N2, O2, Mg, Ti, Nb, Mo, Si, Ni, Fe, B2O3, TiO2, Cr2O3, MoO3, Fe2O3, NiO и др.

В качестве реагентов используется также минеральное сырье и промышленные отходы.

Условия подбора компонентов СВС-системы:

· экзотермичность взаимодействия реагентов

· образование полезных твердых продуктов

· техническая и экономическая целесообразность.

Горение в СВС-процессах оно получило название "твердое пламя".

Рассмотрим процессы при СВС более подробно и начнем с основного способа инициирования – это локальное инициирование реакции на поверхности системы путем подвода кратковременного теплового импульса (электрическая спираль, электроискровой разряд, лазерный луч и др.) с формированием волны горения и ее распространением по не нагретому исходному веществу. Длительность инициирования обычно намного меньше времени сгорания шихты.

· При этом режимы распространения фронта горения в простейшем и наиболее важном стационарном режиме все точки фронта движутся с постоянной во времени и одинаковой скоростью. Когда стационарный режим теряет устойчивость, могут возникнуть неустойчивые режимы распространения фронта: плоские автоколебания скорости фронта горения (пульсирующие горение)

· локализация реакции горения в очагах, движущихся по винтовой траектории (спинновые волны),

· беспорядочное движение множества очагов горения (хаотические твердые пламена).

Волна горения не распространяется по шихте в случае сильных теплопотерь в окружающую среду (малые диаметры шихтовых образцов, низкие адиабатические температуры взаимодействия реагентов).

В волне горения протекают различные химические, физические и физико-химические процессы, обеспечивающие в своей совокупности необходимое тепловыделение. Волна имеет определенную протяженность и состоит из ряда зон:

· зоны прогрева или предпламенной зоны (в ней реакции горения еще не протекают, а только осуществляется теплоперенос и нагрев шихты)

· зоны реакции (в ней протекают основные реакции горения, обеспечивающие необходимое тепловыделение)

· зоны догорания (в ней продолжаются химические реакции, но они уже не влияют на скорость распространения фронта)

· зоны (стадии) вторичных физико-химических превращений, определяющих состав и структуру конечных продуктов.

Распространение зоны химических реакций называют волной горения. Фронт - это условная поверхность, разделяющая зоны прогрева и реакции (передний край высокотемпературной зоны волны). Прохождение волны горения является основной стадией СВС. Популярная формула:

СВС = горение + структурообразование

,

вторичные физико-химические превращения составляют вторую стадию СВС.

Процесс распространения волны характеризуют:

· пределом погасания (связь между параметрами системы, разделяющие две ситуации: распространение волны и отсутствия горения при любых условиях инициирования)

· пределом потери устойчивости (связь между параметрами системы, разделяющими режимы стационарного и неустойчивого горения)

· скоростью распространения фронта,

· максимальной температурой и

· темпом нагрева вещества в волне стационарного горения,

· в неустойчивых процессах - частотой пульсаций, скоростью движения очага по винтовой траектории, величиной сверхадиабатического эффекта и др.

· глубиной химического превращения исходных реагентов в конечные продукты (полнота горения)

- Зависимость недогорания от размеров частиц металла

- Зависимость недогорания от относительной плотности образца

· неравновесностью продукта горения, характеризующую незавершенность фазовых и структурных превращений в процессе; темпом остывания продуктов горения (редко).

Благодаря высоким значениям скорости и температуры горения и скорости нагрева вещества в волне СВС относят к категории экстремальных химических процессов.

Страницы: 1 2

Смотрите также

Химические реакции
...

Целлюлоза
...

Влияние температуры на скорость химической реакции
...