Ионный обмен

Страница 1

Методы ионного обмена в различных модификациях нашли в настоящее время широчайшее применение не только для аналитических целей, но и в препаративных работах неорганического синтеза. Несмотря на многообразие методов, с применением ионного обмена (распределительная хроматография, хроматография на бумаге, использование жидких ионообменников, тонкослойная хроматография и т. д.) ведущая роль по-прежнему остается за классическими методами ионного обмена.

Успешное решение любой конкретной задачи с применени­ем метода ионного обмена зависит от правильного выбора сорбента и условий его использования. Для этого весьма сущест­венно представлять себе структуру и свойства сорбента как:

химического соединения, так как ионообменная способность, механические и физико-химические свойства сорбентов тесно связаны с их структурой и условиями синтеза.

Ионитами называются органические или неорганические вещества, практически нерастворимые в воде или других рас­творителях, содержащие активные (ионогенные) группы с под­вижными нонами и способные обменивать эти ионы на ионы других электролитов (поглощаемые ионы).

В зависимости от характера введения ионообменных групп все сорбенты делятся на три основных класса:

1. Сорбенты, содержащие в своей структуре кислотные группы, т. е. сорбенты, обладающие свойствами кислот и спо­собные к обмену катионов (катиониты).

2. Сорбенты, содержащие в структуре основные группы, т. е: сорбенты, обладающие свойствами оснований и способные к обмену анионов (аниониты).

3. Амфотерные иониты, т. е. иониты, ионогенная группа ко­торых может вести себя как кислотная или как основная, в за­висимости от рН среды.

Существуют также смешанные иониты, т е. сорбенты,. в структуры которых одновременно входят как кислотные, так и основные группы.

Основные требования, предъявляемые к ионообменным смо­лам, следующие: высокая механическая прочность; химическая устойчивость; минимальная растворимость и небольшая набухаемость при контакте с раствором; высокая обменная способ­ность (смола должна содержать достаточное количество про­странственно доступных ионообменных групп); достаточная ско­рость обмена; желательная избирательность поглощения опре­деленного типа ионов.

Катиониты могут содержать в своем составе различные кис­лотные группы: сульфогруппу, фосфорнокислые, карбоксиль­ные, фенольные, мышьяково- и селеновокислые и др.

В состав анионитов в качестве функциональных групп мо­гут входить первичные, вторичные и третичные аминогруппы, четвертичные аммониевые и пиридиновые основания.

В зависимости от величины константы диссоциации катионитов в Н+ -форме и анионитов в ОН- -форме все смолы делятся на сильно- и слабокислотные катиониты и соответствен­но сильно и слабоосновные аннониты.

При выборе сорбентов в первую очередь нужно учесть, с чем удобнее работать –с катионитом или анионитом. Многие задачи могут быть успешно решены и на том, и на другом типе сорбентов. Например, для разделения ионов металлов можно с успехом применить катиониты. Однако применение для этой же цели анионитов, основанное на разделении анионных ком­плексов этих металлов, часто бывает проще и быстрее.

Необходимо учитывать также избирательность поглощения сорбентами тех или иных ионов, которая обусловлена хими­ческой природой сорбента и определяется относительной проч­ностью связей обменивающихся ионов в фазе смолы. При этом энергия связи сорбируемого иона зависит не только от проч­ности связи этого иона с активной труппой сорбента, но и от прочности его связей с любыми другими, так называемыми неактивньгми, структурными группами ионита.

Сильные катиониты и аниониты, например, сульфокатиониты и аниониты типа четвертичных аммониевых оснований, не проявляют большой избирательности в отношении большин­ства ионов. Большая емкость смол такого типа, а также их способность функционировать в широком интервале рН могут быть использованы для концентрирования сильно разбавлен­ных растворов, для обессоливания и в других случаях, когда необходимо полное извлечение всех катионов или анионов из раствора. Для выделения какого-либо одного элемента из сме­си элементов бывает удобно подобрать такой сорбент, который избирательно поглощал бы ионы интересующего элемента.

В настоящее время известно большое количество селектив­ных сорбентов. Синтез таких сорбентов сводится к задаче по­лучения смолы с такой структурой, которая подобна структуре веществ, образующих прочные комплексы или нерастворимые соединения с данным ионом. Так была синтезирована смола (селективно сортирующая никель) путем введения в структуру смолы глиоксимовых группировок.

После выбора соответствующего сорбента необходимо опре­делить область кислотности, в которой работает выбранный ионообменник, и его химическую устойчивость по отношению к тем рабочим средам и температурам, при которых должна проводиться очистка.

Страницы: 1 2 3

Смотрите также

Системы химического мониторинга
...

Алмазы
...

Заключение
В заключение курсового проекта можно сказать, что в процессе его создания были выполнены следующие цели: ·         изложены основные концепции появления и ...