Твердые органические диэлектрики.

Научная литература / Смолы природные и синтетические / Твердые органические диэлектрики.

К органическим диэлектрикам относятся материалы, в составе

которых находится углерод. В качестве добываемые преимуще­ственно в Африке и Юго-Восточной Азии. Раньше благодаря растворимости в растительных маслах они довольно широко применялись в производстве электроизоляционных лаков, сейчас практически вытеснены синтетическими полимерами. Я Янтарь - также ископаемая смола, добываемая в России, обладающая очень высокими электрическими параметрами: удельное сопротивление органических диэлектриков в промышленности при­меняют как природные, так и синтетические полимеры, которые получают методом химического синтеза. Часто их называют смо­лами.

Открытие синтетических полимеров сыграло большую роль в развитии многих отраслей, в том числе электротехники и радио­электроники.

Большинство органических диэлектриков представляют собой высокомолекулярные вещества, которые содержат очень большое число атомов или простейших молекул. Основу многих высокомо­лекулярных диэлектриков составляют полимерные соединения, которые получают из мономеров (низкомолекулярных соединений) в процессе реакций полимеризации или поликонденсации.

Полимеризация

- это процесс соединения большого числа моно­меров с образованием нового высокомолекулярного вещества (по­лимера) без выделения побочных продуктов реакции.

Поликонденсация

- это процесс соединения разнородных моно­меров с образованием полимера и выделением побочного продук­та реакции. Свойства полимеров определяются химическим составом, вза­имным расположением атомов и строением макромолекул. По стро­ению макромолекулы полимеров делятся на линейные (нитевидные) и пространственные (сетчатые). Линейные полимеры представляют собой сочетание звеньев одной определенной структуры. Сочетание двух или трех химичес­ки различных звеньев образуют полимеры, которые называют со­вмещенными или сополимерами. Линейные полимеры относят к термопластичным материалам. Они обладают следующими свойствами: температура размягчения 50 .120°С, сравнительно высокий температурный коэффициент объемного расширения ТКР, невысокая теплостойкость, легко де­формируются при нагревании и затвердевают при охлаждении, име­ют аморфную структуру и при нагревании плавно переходят из твер­дого состояния в жидкое или текучее.

Электрические свойства линейных полимеров зависят от рас­положения атомов или определенной группы атомов в цепи мак­ромолекулы. Линейные полимеры с несимметричным строением атомов являются полярными и имеют большие диэлектрические потери. Линейные полимеры с симметричным строением мономе­ров являются неполярными и имеют малые диэлектрические по­тери. Большинство материалов на основе линейных полимеров имеют аморфную структуру и при нагревании плавно переходят из твердого состояния в жидкое или текучее. Некоторые полиме­ры склонны к образованию кристаллов, т. е. способны кристалли­зоваться. В пространственных полимерах макромолекулы связаны поперечными химическими связями. Пространственные полимеры относятся к термореактивным ма­териалам. Они обладают следующими свойствами: большая жест­кость, чем у линейных полимеров; при нагревании не размягчают­ся; не гибкие; не способны образовывать пленки и волокна; не ра­створяются в растворителях. По тепловым свойствам полимеры подразделяют на термоплас­тичные и термореактивные. Термопластичные материалы (термопласты) характеризу­ются тем, что нагревание до температуры, соответствующей плас­тическому состоянию, не вызывает необратимых изменений их свойств . Они тверды при достаточно низких температурах, но при нагревании становятся пластичными и легко деформируются. В настоящее время термопластичные материалы составляют при­мерно 75% всех потребляемых мировой электротехнической про­мышленностью полимерных материалов. В термореактивных (термоотверждающихся) материалах при достаточной выдержке при высокой температуре происходят необратимые процессы, в результате которых они теряют способ­ность плавится и растворяться, становясь твердыми и механически прочными.

Смотрите также

Энергия активации
Химическая кинетика - это наука о скоростях и механизмах химических превращений, о явлениях, сопровождающих эти пре­вращения, и о факторах, влияющих на них. Механизм реакции - это последо ...

Золото и его переработка
Основные свойства Начинать разговор о золоте лучше всего со свойств этого металла и только потом переходить к тому, как эти свойства используются человеком. Золото интересно тем, что в его х ...

От алхимии к научной химии
...