Сульфирование ароматических соединений серной кислотой и олеумом
Поскольку в процессе старения моторного масла доля ароматических соединений возрастает, целесообразно рассматривать процесс сульфирования на их примере.
Сульфирование ароматических соединений является реакцией электрофильного замещения и в среде концентрированной серной кислоты обычно протекает по схеме:
Существенным отличием этой реакции от других реакций электрофильного замещения является ее обратимость. (Следует отметить, что в отсутствие воды обратимость практически не проявляется, так как константы скорости обратных реакций на 5-6 порядков ниже констант скоростей реакций, ведущих к образованию целевых продуктов).
В связи с рассмотрением вопроса о механизме сульфирования необходимо обсудить строение и основные свойства как серной кислоты, так и олеума.
Безводная серная кислота при комнатной температуре представляет собой в сильной мере ассоциированное соединение с длинными образованными за счет водородных связей, цепевидными молекулами:
При повышении температуры эти цепочки разрушаются.
При растворении SO3 в концентрированной серной кислоте образуется целая серия полимерных кислот:
и т.д.
Смесь H2SO4, H2S2O7, H2S3O10, H2S4O13 - густая маслянистая, дымящая на воздухе жидкость, - называется олеумом. Пары над олеумом состоят главным образом из SO3, а в парах над серной кислотой SO3 почти нет. Необходимо учитывать, что концентрированная H2SO4 является довольно сильным окислителем, особенно при нагревании. Сама концентрированная H2SO4 не способна сульфировать органические соединения. Это, в частности, доказывается тем, что при добавлении сульфата натрия к серной кислоте скорость сульфирования резко падает и при увеличении концентрации сульфата процесс останавливается, так как всякая диссоциация H2SO4 подавляется и сульфирующие частицы образоваться не могут.
Н.Н.Ворожцов и К.К.Ингольд полагали, что сульфирующими агентами являются поляризованные молекулы SO3 и S2O6, а также катионы НSO3Å и Н3SO4Å:
Б.В.Пассет с сотрудниками впервые применил для исследования механизма и кинетики сульфирования помимо традиционных химических и физико-химических методов математическое моделирование процесса на ЭВМ. Проведенные исследования подтвердили правильность точки зрения К.Ингольда о том, что основным сульфирующим реагентом является поляризованная молекула SO3. Механизм сульфирования НSO3Å следует, по-видимому, рассматривать как кислотно-катализируемое сульфирование SO3.
Для промышленного сульфирования серной кислотой чаще всего используют 92-93%-ную серную кислоту (купоросное масло) и 98-100%-ную серную кислоту (моногидрат).
Незамещенные ароматические углеводороды сульфируют серной кислотой при нагревании. При сульфировании замещенных аренов электродонорные заместители облегчают прохождение реакции, а электроноакцепторные - затрудняют. Поэтому процесс получения ди- и трисульфокислот обычно ведут в две стадии. Сначала в относительно мягких условиях вводят одну сульфогруппу, а затем, не выделяя моносульфокислоту из реакционной массы, в жестких условиях (олеум, высокая температура) вводят вторую сульфогруппу.
При сульфировании малоактивных субстратов используют олеум (обычно 20-25%-ный или 60-65%-ный) [12].
Рис.1.1 Зависимость содержания сульфогрупп от концентрации олеума при сульфировании масел [13].
Сульфирование начинается обычно как гетерогенный процесс. Спустя непродолжительное время после начала реакции масса гомогенизируется, и основное время процесс протекает как гомогенный.
Реакция десульфирования протекает при повышенных температурах при наличии в реакционной массе воды и катализируется кислотами.
Концентрация серной кислоты оказывает решающее влияние на ход процесса сульфирования. По мере прохождения сульфирования концентрация серной кислоты вследствие разбавления ее реакционной водой падает:
С уменьшением концентрации серной кислоты скорость сульфирования резко снижается вследствие кислотной диссоциации в соответствии с уравнением:
и резким уменьшением концентрации сульфирующих реагентов (SO3, HSO3Å). Между тем, концентрация сульфирующих частиц даже в 100%-ной H2SO4 невысока и составляет доли процента.
Смотрите также
Синтез 4-метоксифенола
4-Метоксифенол (гидрохинона монометиловый эфир, пара-метоксифенол,
4-Гидроксианизол) – ромбические кристаллы (растворитель перекристаллизации -
вода). Молекулярная масса: 124,14. Температура ...
Крашение натурального шелка бромакриламидными красителями
...
Планирование дискриминирующих экспериментов
Для дискриминации гипотез используют
эксперименты различного типа.
Химические эксперименты. Различные
тестовые реакции часто позволяют определить вероятность участия того или иного
вещес ...