Среда воздействует на цвет

Книги по химии / Химия цвета / Среда воздействует на цвет
Страница 1

Катионы, анионы в растворе окружены оболочкой раст­ворителя. Слой таких молекул, непосредственно примыка­ющих к иону, называют сольватной оболочкой (от слова solver - растворять). Число входящих сюда молекул опре­делить трудно. Нас, впрочем, интересует иной эффект сольватации.

В растворах ионы могут воздействовать не только друг на друга, но и на окружающие их молекулы растворителя, а те в свою очередь на ионы. При растворении и в резуль­тате сольватации возникает цвет у иона ранее бесцветного. Например, безводные CuF2 и CuSO4 белые, а их растворы окрашены в голубой цвет. Это окраска гидратированного иона меди. В его ближайшее окружение входит как мини­мум шесть молекул воды. Четыре из них связаны с ним прочно, а две — слабо. Замена окружения иона из плохо деформируемых ионов F- и SО42- на легко поляризуемые молекулы воды приводит к появлению цвета. Удаление воды (например, выпариванием) приводит к выпаданию кристаллогидратов того же цвета. Ведь в них содержатся молекулы воды. Так, в кристаллогидрате сульфата меди CuSО4 • 5H2О четыре из пяти молекул размещены вокруг иона меди, а пятая занимает промежуточное положение и связана как с Сu2+, так и с группой SO42- (рис. 11).

Рис. 11. Схема строения кристаллогидрата модного купороса. В рам­ку заключена одна молекула CuSО4 • 5H2О. Штрих означает, что молекула Н2О связана с двумя ионами кислорода и другой молеку­лой воды.

Замена молекул воды на аммиак углубляет цвет. Аммиачные молекулы деформируются легче и интенсив­ность окраски усиливается. При этом следует учесть, что происходит более тесное взаимодействие катиона Сu2+ с аммиаком — образуется комплексный ион [Cu(NH3)4] +. На усилении интенсивности цвета Сu2+ основана и известная реакция на многоатомные спирты. Голубой осадок Сu(ОН)2 переходит в интенсивный синий при образовании глицерата меди. Органическая молекула легко деформи­руется под действием иона меди. В случае меди деформа­ция, видимо, влияет на устойчивость одного из d-электронов меди. Он становится способным, поглощая уже длин­новолновые кванты, пороходить в возбужденное состояние. Если легко деформируемый анион вытесняется из окруже­ния катиона менее поляризуемым, то окраска может исчезнуть вовсе. Например, РbI2 в твердом виде золотисто-желтый, а в растворе бесцветен. При растворении и после­дующей диссоциации ион I-, окружавший свинец в твер­дом соединении, заменяется труднее деформируемыми мо­лекулами воды. А раз нет деформации, то исчезает и цвет.

Еще более резко, чем просто растворение, может ска­зываться на цвете соединения замена одного растворителя другим. Синий раствор CoCl2 в этиловом спирте при разбавлении его водой становится розовым. Вместо привычного голубого цвета гидратированных ионов меди появляется золеный, если белый порошок безводной соли СuСl2 растворить но в воде, а в этиловом спирте.

Причиной изменения окраски является различная де­формируемость молекул растворителей и катионов, испы­тывающих в свою очередь поляризующее действие со стороны молекул воды или этанола. Подвижные легко возбу­ждающиеся электроны становятся способными поглощать иные кванты видимого цвета. Ион кобальта в воде менее поляризован и для его «цветных» электронов требуются более короткие лучи. Он пропускает или отражает длин­новолновые, отчего его водный раствор кажется розовым. В спиртовом растворе меди в отраженных лучах умень­шается доля синих лучей, и спиртовой раствор становится зеленым. При замене растворителя окраска даже может вовсе исчезнуть. Цветной ион становится как бы невидим­кой: в воде бесследно исчезает золотисто-желтая окраска РbI2. Исчезновение объясняется тем, что вещество распа­дается на отдельные ионы, каждый из которых бесцветен, будучи вместе в осадке, они обусловливают цвет. Точно так же происходит с димерными молекулами Аl2Cl6, кото­рые имеют синий цвет в этаноле и лишаются окраски в воде, потому что при диссоциации вода разобщает катио­ны А13+ и анионы С1-.

Иногда исчезновение цвета происходит и без распада вещества на ионы.

Ярко-красная соль иодида ртути HgI2 становится со­вершенно бесцветной при растворении в эфире. Специаль­ными исследованиями установлено, что молекулы находят­ся в растворе в недиссоциированном виде. Причиной исчезновения окраски, как полагают, является уменьшение деформации ионов. В эфире образуются сольватные комплексы типа [HgI2 (эфир) x]. Число частиц, на которых ока­зывает свое поляризующее действие катион Hg2+, возра­стает: ведь наряду с двумя легко деформируемыми ионами I1- появляется несколько молекул эфира. Силовое поле катиона дробится между частицами. Его действия уже не хватает, чтобы вызвать поляризацию всех частиц сразу. Деформация каждой из них мала, а у анионов I1- стано­вится существенно меньше, чем в твердом состоянии. След­ствием такого изменения взаимодействия становится исчезновение цвета. Нужно всего лишь наполовину умень­шить действие двухзарядного катиона ртути на анион иода, чтобы уменьшилась их деформация до такой степени, что молекула становится неокрашена, даже если при этом возрастают ее размеры. Именно так обстоит дело, когда к ярко окрашенному осадку РbI2 или HgI2 приливают избы­ток раствора иодида калия. Образующиеся ионы [РbI4]2-и [HgI4]2- окраски в видимом свете не имеют.

Страницы: 1 2

Смотрите также

Вода в жизни человека
...

Классификация витаминов
...

Синтез, кинетика, термодимика
...