Теория водородного атома

Страница 2

3. Поглощение и излучение атомом энергии имеет место только при п е р е с к о к е электро­на с одной орбиты на другую. При этом разность энергий начального (Ео) и конечного (Ек) состояний воспринимается или отдается в виде кванта лучистой энергии (фотона), отвечающего излучению с частотой колебаний, определяемой рис. 111-22. Возможные соотношением hn = Eо - Eк.

Изложенные представления позволили вычислить радиусы различных “дозволенных” кван­товыми условиями орбит электрона в атоме водорода. Оказалось, что они относятся друг к другу как 12:22:32:42: .:n2. Величина n была названа г л а в н ы м к в а н т о в ы м ч и с л о м. Как видно из приведен­ного выше, n может принимать различные значения, соответствующие натуральному ряду целых чисел.

Радиус ближайшей к ядру орбиты (n = 1) оказался для водорода равным 53 пм. Электрон вращается по ней со скоростью около 2200 км/с (средняя скорость враще­ния Земли вокруг Солнца составляет 30 км/с). На рис. III-22 дана схема возможных для атома водорода орбит, причем приведены лишь первые четыре. Скорость вращения электрона на второй из них вдвое меньше, чем на второй из них вдвое меньше,чем на первой, на третьей — втрое меньше и т. д.

Рис. III-22. Возможные электронные орбиты атома водорода по Бору

Рис. III-23. Схема происхождения водородного спектра

Работа, которую необходимо затра­тить для вырывания электрона водо­родного атома с той или иной орби­ты, обратно пропорциональна квадра­ту ее главного квантового числа. По­этому, например, вырвать электрон с третьей орбиты в девять раз легче, чем с первой.

Вычисленные частоты излучений, возникающих при перескоках электро­на с одних орбит на другие, оказались совпадающими с частотами линий на­блюдаемого на опыте водородного спектра. Как видно из рис. III-23, перескокам с различных более удаленных от ядра орбит на отвечаю­щую n = 1 соответствуют линии серии, лежащей в ультрафиолетовой области, перескокам на орбиту с n = 2— линии серии Бальмера (рис. III-21), а перескокам на орбиты с n = 3, 4 и 5 — линии трех серий, лежащих в инфракрасной области. Две последние серии были обнаружены экспериментально уже после разработки теории водород­ного атома и именно на основе ее предсказаний.

5-6

Если сообщить водородному атому достаточную энергию, то происходит его ионизация — распад на электрон и протон. Энергия, ко­торую нужно для этого затратить, отвечает n = ¥ (рис. III -24) и называется энергией ионизации (I). Она определена из спектра и для нормального состояния атома водорода составляет 1311 кДж на моль.

Н + 1311 кДж = Н+ + е

По соотношению I = 1311/n2 энергия ионизации мо­жет быть рассчитана и для возбужденных состояний атома водорода.

7

Дальнейшее развитие теории водородного атома было дано Зоммерфельдом (1916 г.), показавшим, что кроме круговых орбит электрон может двигаться и по эллиптическим (с ядром в одном из фокусов эллипса), причем почти одинаковому уровню энергии соответ­ствует столько возможных типов орбит, сколько еди­ниц в главном квантовом числе. Последнее определяет размер большой полуоси данного семейства эллипсов (в частном случае круга его радиус). Величина ма­лой полуоси определяется “п о б о ч н ы м” квантовым числом (6), которое также принимает значения по­следовательных целых чисел, но не может быть боль­ше главного.

Страницы: 1 2 3

Смотрите также

Целлюлоза
...

От алхимии к научной химии
...

Биологическая роль аминокислот
...