Общие положения электрохимической теории коррозии.
Если не пользоваться гальваническим элементом, а просто погрузить металл в раствор, содержащий окислитель, то стационарное состояние будет возможно только в том случае, если скорость реакции окисления металла (1) будет равна скорости восстановления окислителя (2).
Это означает, что при стационарном потенциале скорость анодного процесса (окисления) равна скорости катодного процесса (восстановления). Равенство скоростей реакций (1) и (2) выражено на рис.1 равенством ординат (сил тока), отвечающих . Необходимо подчеркнуть, что в этом случае нет электрического тока, доступного непосредственному измерению. Слово “ток” означает, что число частиц (или грамм-частиц), прореагировавших на поверхности металла, можно выразить в единицах силы тока. Если площадь поверхности электрода , то и , где и - плотности анодного и катодного токов, соответственно. Для рассматриваемого случая условие стационарности можно выразить через или через , если принять, что обе реакции протекают на поверхности одной и той же величины .
На рис.1 изображены анодная а и катодная к поляризационные кривые для данного металла в растворе определенного состава и для данного окислителя на поверхности того же металла. Наклон кривых а и к определяет кинетику процесса. Таким образом, рисунок содержит сведения о термодинамической возможности коррозии данного металла некоторым окислителем и о скорости этого процесса, определяемой кинетикой реакций (1) и (2), т.е. зависимостью их скоростей от смещения соответствующих потенциалов от равновесного значения. Коррозия возможна только в том случае, если . Если и или , то окисление металла невозможно (рис.2 ).
Рис. 3. Поляризационные кривые, отвечающие случаю, когда ; при этом и коррозия металла данным окислителем невозможна.
Легко понять, что при данном скорость коррозии может быть различной, если поляризационные кривые а и к идут с различными наклонами. Та кривая, которая отвечает более высокому перенапряжению (идет более полого), будет определять в основном скорость процесса. Так, при большом перенапряжении реакции (2) получим случай так называемого катодного контроля, когда кинетика определяется скоростью катодной реакции; при этом близок к . При большом перенапряжении реакции (1) получим анодный контроль; при этом близок к (рис.3).
Смотрите также
Эволюция и кислород
ИСПОКОН веков людей волновал вопрос, как возникли живой мир и
они сами. Кажущаяся непостижимость происхождения организмов во всей их
сложности и совершенстве неизменно толкала человечество к ...
Синтез ацетилферроцена
Ферроцен
(дициклопентадиенилжелезо) - металлорганическое соединение железа с пентагональной
антипризматической «сэндвичевой» структурой. Благодаря своему
высокосимметричному сэндвичевому ст ...