Разделение эндометаллофуллеренов
Полученная в результате экстракции смесь фуллеренов с эндометаллофуллеренами различного сорта разделяется на отдельные фракции методом жидкостной хроматографии. Основная трудность, возникающая на пути решения этой проблемы, связана с чрезвычайно низким содержанием эндоэдральных фуллеренов в растворимом сажевом экстракте. Для преодоления этой трудности требуется многократное повторение хроматографической процедуры, а также подходящее сочетание различных типов сорбентов и растворителей на каждой стадии.
Еще сложнее в техническом отношении процедура разделения различных изомеров, относящихся к одному и тому же эндоэдральному соединению фуллерена. Такие молекулы обладают одинаковой массой, но различной пространственной структурой, поэтому соответствующие время задержки при их хроматографическом разделении различаются незначительно. Кроме того, пики отдельных изомеров эндоэдральных соединений могут оказаться в тесном соседстве с соответствующими пиками полых фуллеренов, что также затрудняет выделение изомеров в чистом виде. Однако при использовании многоступенчатой хроматографической процедуры эта задача может быть успешно решена.
Одна из первых работ по выделению определенного структурного изомера эндоэдральной молекулы в чистом виде была выполнена еще в 1993 году [29]. Она посвящена изоляции основного изомера La@C82 методом двухступенчатой жидкосной хроматографии. Усилия исследователей по выделению изомеров эндоэдральных молекул стали более целенаправленными после публикации атласа фуллеренов [30], в котором введена систематическая классификация изомеров фуллеренов. В основу этой классификации положены свойства симметрии молекул фуллеренов, определяющие их поведение в условиях спектроскопических, ЯМР - или ЭПР - исследований. Однако наряду с классификацией, основанной на использование свойств симметрии молекул, широко применяется так называемая хроматографическая классификация [31]. Согласно этой классификации различным изомерам присваиваются номера I, II, III, … в соответствии с последовательностью появления пиков на хроматограмме.
На рисунке 9 показаны типичные хроматограммы, которые наблюдаются при последовательном выделении эндоэдрального соединения Sc@С82(I) [32]. На первой стадии ВЭЖХ раствор экстракта эндометаллофуллеренов в толуоле разделяют, используя колонку Trident-Tri-DNP (Buckyclutcher I, 21 mm ´ 500 mm: Regis Chemical) или колонку 5-PBB(pentabromobenzyl) (20 mm ´ 250 mm, Nacalai Tesque) в качестве элюента используется CS2. На этой стадии отделяют фракцию, содержащую Sc@C2n от фракции С60, С70 и высших фуллеренов (С76-С110). Разделение и очистка скандий содержащих эндофуллеренов осуществляется на второй стадии ВЭЖХ с использованием колонки Cosmosil Buckyprep (20 mm ´ 250 mm, Nacalai Tesque), элюент толуол. Как видно, последовательное использование на различных стадиях очистки колонок, отличающихся сортом сорбента, позволяет освободить раствор от фракций, для которых время задержки близко к соответствующему значению для целевого продукта. В таблице 1 приведены эндометаллофуллерены выделенные методом ВЭЖХ [33].
Хроматограммы, иллюстрирующие последовательное хроматографическое разделением и очистку эндоэдрального соединения Sc@С82: (а) хроматограмма раствора обогащенного относительно Sc@С82; (б) хроматограмма раствора чистого Sc@С82(I).
Таблица 1.
Выделенные и очищенные эндометаллофуллерены.
M |
Mm@C2n |
3 основная группа |
Sc2@C84(I), Sc2@C84(II), Sc2@C84(III), Sc2@C74, Sc3@C82, Sc@C82(I), Sc2@C82(I), Sc2@C82(II), Sc2@C86(I), Sc2@C86(II), Sc2@C76, Y@C82, La2@C80, La@C82(I), La@C82(II) |
Лантаноиды |
Ce@C82, Ce2@C80, Pr@C82, Pr2@C80, Nd@C82, Sm@C82(I), Sm@C82(II), Sm@C82(III), Sm@C74, Sm@C84, Eu@C74, Gd@C82, Dy@C82, Ho2@C82, Er2@C82, Er@C82, Tm@C82(I), Tm@C82(II), Tm@C82(III), Yb@C82(I), Yb@C82(II), Yb@C82(III). |
2 основная группа |
Ca@C82(I), Ca@C82(II), Ca@C82(II), Ca@C82(IV), Ca@C72, Ca@C74, Ca@C84(I), Ca@C84(II), Ca@C80, Sr@C82, Sr@C84, Sr@C80, Ba@C84, Ba@C80. |
Применяя адекватные комбинации растворителей, колонок и элюэнтов на первой и второй стадиях процесса можно получить образцы эндоэдральных металлофуллеренов чистотой ~95 % в количестве до 1¸2 мг в день. Однако процедура выделения эндоэдральных фуллеренов в чистом виде в макроскопическом количестве остается весьма трудоемкой. Так, в работе [34] указывается, что для получения 10 мг Y@С82 необходимо выполнить 40 - 50 хроматографических загрузок в течение 25 - 35 ч, при этом требуется 30 -40 л толуола.
Смотрите также
Биологическая активность меди
Медь (лат. Cuprum) -
химический элемент. Один из семи металлов, известных с глубокой древности. По
некоторым археологическим данным - медь была хорошо известна египтянам еще за
4000 лет до ...
К вопросу о металлической связи в плотнейших упаковках химических элементов
Обычно в литературе металлическая связь описывается,
как осуществленная посредством обобществления внешних электронов атомов и не
обладающая свойством направленности. Хотя встречаются попытк ...