Процесс растворения

Процесс растворения кристалла в жидкости происходит так. Когда кристалл соли, например, хлорида натрия попадает в воду, то распложенные на его поверхности ионы притягивают полярные молекулы воды (ион-дипольное взаимодействие). К ионам натрия молекулы притягиваются своими отрицательными полюсами, а к ионам хлора положительными. Но если ионы протягивают к себе молекулы воды, то и молекулы воды притягивают к себе ионы. В то же время притянутые молекулы воды испытывают толчки со стороны непритянутых молекул воды, находящихся в тепловом движении. И этих толчков, а так же тепловых колебаний самих ионов достаточно для того, чтобы ион хлора или натрия отделился от кристалла и перешел в раствор. Вслед за первым слоем ионов в раствор переходит следующий слой и таким образом идет постепенное растворение кристалла. Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Гидратация – основная причина диссоциации . Она отчасти затрудняет их обратное соединение (ассоциацию). Под гидратацией обычно понимают совокупность энергетических процессов и структурных изменений, происходящих в растворе при взаимодействии частиц растворенного вещества с водой. Слой частиц воды, непосредственно присоединенных к центральной частице растворенного вещества образует вокруг нее гдратную оболочку. Наименьшее число молекул растворителя, удерживаемое около частицы растворенного вещества называется координатным числом гидратации. Координатное число определить трудно, оно зависит от природы растворенного вещества и растворителя.

Доказательством того, что компоненты раствора химически взаимодействуют друг с другом, служит тот факт, что многие вещества выделяются из водных растворов в виде кристаллов, содержащих кристаллизованную воду – гидратов; причем на каждую молекулу растворенного вещества приходится определенное число молекул воды. Как правило, гидраты – нестойкие соединения, во многих случаях они разлагаются уже при выпаривании растворов. Но иногда гидраты так прочны, что при выделении растворенного вещества из раствора вода входит в состав его кристаллов. Вещества, в состав которых входят молекулы воды называются кристаллогидратами, а содержащаяся в них вода - кристаллизованной. Прочность связи между гидратами и кристаллизованной водой различна. Многие из них теряют кристаллизованную воду уже при комнатной температуре, для некоторых требуется значительное нагревание, а от кристаллогидрата алюминия, например, не удается удалить воду никакими способами.

Состав кристаллогидратов принято изображать формулами, показывающими, какое количество кристаллизованной воды содержит кристаллогидрат. Например, кристаллогидрат сульфата натрия, содержащий на один моль Na2SO4 10 молей воды выражается формулой Na2SO4.10H2O.

Иначе протекает диссоциация молекул, которые обладают полярной связью. Молекулы воды, притянувшиеся к концам полярной молекулы (диполь-дипольное взаимодействие), вызывают расхождение ее полюсов – поляризуют молекулу. Такая поляризация в сочетании с колебательным движением атомов в самой молекуле, а так же беспорядочное тепловое движение окружающих ее молекул воды приводит к распаду полярной молекулы на ионы. Как и в случае растворения кристалла с ионной связью эти ионы гидрируются.

Гидрированные ионы содержат как постоянное, так и переменное количество молекул воды, это количество зависит от концентрации и других условий. Гидрат постоянного состава образует ион водорода H+, он называется ионом гидроксония. Ион гидроксония благодаря очень маленьким размерам обладает электростатическим полем большой электороотицательности. Он не имеет электронной оболочки и поэтому не испытывает отталкивания от электронных оболочек других атомов. Поэтому в растворах ион гидроксония существует исключительно в виде объединений с молекулами воды. Самый прочный комплекс образуется с одной молекулой воды, который так же окружается гидратной оболочкой из других молекул.

Смотрите также

Технико-экономические показатели и определение экономической эффективности проектируемого производства.
 Сводная таблица технико-экономических показателей для выпускающего цеха составляется в Таблице 17. При её составлении часть показателей переносится из расчетов, выполненных в предыдущих разделах, ...

Источники возбуждения спектров
В практике атомно-эмиссионного спектрального анализа в качестве источников возбуждения спектров применяют пламя, электрические дуги постоянного и переменного тока, низко- и высоковольтную конденсир ...

Синтез метанола
...