Химическая коррозия
d = d0 (1 – e-kSt) (3)
где d — толщина пленки; d0 —постоянная, предельная величина; k — константа скорости гетерогенной реакции; S — поверхность раздела (1 см2), t — время. При t ® ¥ d ® d0. Уравнение (3) есть кинетическое уравнение для гетерогенной реакции, в которой площадь контакта не изменяется со временем. В рассмотренном случае лимитирующим фактором является скорость реакции, а не диффузия.
При больших температурах четко выявляется параболический закон роста, т. е. затухание диффузии с ростом толщины слоя. В этом случае лимитирующим процессом является уже диффузия, но не скорость химической реакции, а условия диффузии можно определить соотношением
d grad C = const (4)
где d — толщина оксидного слоя; grad C — градиент концентрации кислорода по толщине пленки. После соответствующих преобразований уравнения диффузии и его интегрирования получаем закон роста пленки:
(5)
где DT — коэффициент диффузии; P = d grad C; M — молекулярная масса оксида; r — плотность оксида.
Если пленка оксида такова, что кислород в ней обладает высокой диффузионной способностью при высоких температурах, можно считать grad C = const. В этом случае возникает линейный закон роста пленки:
(6)
В зависимости от температуры для одного и того же окисляющегося металла проявляются различные законы роста пленкиоксида. Например, для титана при низких температурах выполняется логарифмический закон роста пленки; она пассивирует его очень стабильно. При 900—1100К он окисляется уже по параболическому закону, т. е. пассивируется частично, а при более .высоких температурах окисляется по линейному закону, т. е. пленка оксидов перестает быть защитной (Н. Д. Томашев).
Строение оксидных пленок очень сложно и зависит от характера образующихся между металлом и кислородом соединений и процессов диффузии. Процессы диффузии в оксидных слоях могут происходить за счет перемещения ионов кислорода O2- от газовой фазы по направлению к металлу или ионов Ме+ в противоположном направлении. Ионы перемещаются по вакансиям в кристаллических решетках оксидов.
Если в толще образовавшейся пленки преимущественно движутся ионы O2-, то это приводит к утолщению пленки за счет уменьшения толщины металла, т. е. общая толщина коррелирующего образца практически не изменяется.
Наоборот, если преимущественно перемещаются ионы Ме+, то пленка растет в направлении газовой фазы (O2) и размер корроди-рующего образца растет.
Может быть и промежуточный случай — одновременного движения ионов O2- и Ме+, что вызывает рост пленки в обоих направлениях. Диффузия ионов создает неравномерное электрическое поле вблизи поверхности металла
Оксидные, нитридные и другие пленки на металлах обычно приобретают свойства полупроводимости.
Сложный теоретический вопрос о развитии оксидных и иных слоев на поверхности металлов имеет практическое значение в технологии машиностроения, так как изменение размеров деталей после их оксидирования необходимо учитывать (допуск на обработку).
У металлов с переменной степенью окисления строение пленки по толщине неодинаковое.
Наилучшие по стойкости оксидные пленки обладают структурой шпинелей RO *R2O2; образуясь на поверхности сплавов (IХ18Н9), они служат надежной защитой от коррозии (FeO * Cr2O3 или NiO * Cr2O3).
Практически вообще не пасси-вируются при высоких температурах d-металлы с высокими степенями окисления, образующие летучие оксиды: Мо, W, Nb, Та, Rе. Температуры кипения их оксидов ниже температур плавления соответствующих металлов, и поэтому оксиды улетают в газовую фазу, обнажая поверхность металла для дальнейшего окисления.
Изменение состава металла в результате газовой коррозии.
Если образование оксидного слоя при высокой температуре сопровождается интенсивной диффузией кислорода внутрь металла, то это приводит к изменению его состава за счет окисления легирующих компонентов. Особенно это заметно на конструкционных сталях, в поверхностных слоях которых происходит окисление углерода — ферритная полоска, образование которой сопровождается потерей прочности, особенно для тонкостенных изделий. Взаимодействие сталей с окисляющими средами можно представить в виде следующих уравнений:
Последний случай — наиболее опасный, так как водород, растворяясь в стали, создает повышенную хрупкость металла. При тонкостенных конструкциях это влияние газовой коррозии на снижение прочности особенно заметно.
Химическая коррозия в неводных средах.
Эти процессы харак терны для эксплуатации химико-технологического оборудования. Несмотря на сложность их развития, в прийципе они представляют собой обычные гетерогенные химические реакции:
Смотрите также
Строительно-монтажная схема здания
цеха и компоновка оборудования
Исходные данные:
1.
Географическое положение и климат:
проектируемая стадия
концентрирования серной кислоты расположена на промышленной площадке завода им.
В.И. ...
Аналитическая химия
Предмет и задачи
аналитической химии (АХ). Значение АХ в производственной и
научно-исследовательской деятельности человека. Химические и физико-химические
методы анализа. Качественный и кол ...
Введение
Физическая химия – наука, объясняющая химические
явления и устанавливающая их закономерности на основе общих принципов физики.
Общая задача физической химии – предсказание
временного хода химичес ...