Комплексы примесь-точечный дефект и их неоднородное распределение вблизи центра гетгерировання

Информация для студентов / Кремний, полученный с использованием геттерирования расплава / Комплексы примесь-точечный дефект и их неоднородное распределение вблизи центра гетгерировання
Страница 1

Принципиальное отличие упругого взаимо­действия примеси с дислокацией от взаимодей­ствия со сферическим геттером проявляется в том, что упругое поле последнего характеризу­ется чисто сдвиговой деформацией и энергия уп­ругого взаимодействия равна нулю :

где К — модуль всестороннего сжатия материа­ла среды, Wo — изменение объема, обусловлен­ное примесным атомом, eii —дилатация упругого поля центра. Поэтому в условиях отсутствия ди-латацнонного взаимодействия и наличия пересы­щения по собственным дефектам дальнодейст-вующий механизм упругого взаимодействия мо­жет быть реализован взаимодействием диполь-ного типа. Дипольные свойства примесного ато­ма могут быть реализованы в случае образова­ния комплекса из двух точечных дефектов: атом примеси—собственный точечный дефект или атом примеси—атом другой примеси.

Количественной мерой взаимодействия комп­лекса точечных дефектов с упругим полем центра дилатации является тетрагональность поля уп­ругих искажений, создаваемых комплексом. В рамках континуальной теории упругости энергия точечного дефекта в поле eii задается выра­жением:

Тензор Wij, называемый тензором объемных де­формаций, полностью характеризует упругие свойства точечного дефекта. Для упругого дипо­ля с осевой симметрией он имеет вид :

ni и nj — направляющие косинусы оси симмет­рии диполя.

Для последовательного .количественного опи­сания образования примесных сегрегаций вблизи центра геттерирования необходимо знать па­раметры Wo и W1, характеризующие отдельный комплекс и определить рас­пределение таких комплексов в пространстве, окружающем центр геттерирования. Расчеты характеристик комплекса проводились методом молекулярной статики. За основу был принят так называемый метод флекс-1 (метод гибкой гра­ницы с перекрывающимися областями). Кри­сталл разбивается на три области. Область 1, непосредственно окружающая кристалл, рассмат­ривается как дискретная. В этой сильно иска­женной области координаты атомов учитывают­ся индивидуально, а энергия рассчитывается с помощью межатомного потенциала. Область 3, наиболее удаленная от дефекта, представляется как упругий континуум. Вклад этой области в общую энергию системы определяется решением уравнений теории упругости, т.е. величинами W0 и W1 и упругими постоянными среды. Область 2 является промежуточной. Координаты атомов в этой области определяются коллективно также » соответствии с теорией упругости, а вклад в энергию системы — с помощью межатомного потенциала. В ходе расчета минимизируется полная энергия системы, являющаяся функцией координат атомов и двух переменных Wo и W1, характеризующих дальнодействующее поле де­фекта. Решение этой вариационной задачи и дает искомые величины.

Расчеты проводились для моно- и дивакансии с межатомным потенциалом Плишкина— Подчиненова. Область 1 содержала 320 атомов в случае моновакансии и 319 атомов в случае дивакаисии, а область 2 содержала 1280 атомов. Дивакансия состояла из двух вакансий в поло­жениях (0,0,0) и (1/2, 1/2,0). Результаты расче­тов приведены в таблице.

Результмы

расчетов компонент тензора объемных деформаций для моно- и днвакансии .

Компонента

Моновакансия

Дивакансия

Wo , м ^-30

-0.75

-1.14

W1 , м^-30

0.00

-1.47

Страницы: 1 2

Смотрите также

Алхимия как культурный феномен арабского и европейского средневековья
Алхимия осталась феноменом Средневековья, тупиковой ветвью познания. Её долго обвиняли в том, что она – лженаука, но во многом благодаря ей появилась истинная наука – химия. В алхимиках же ...

Влияние природы газа-носителя и его параметров на качество разделения веществ в газовой хроматографии
Рассмотрим влияние природы газа-носителя и его параметров на качество разделения веществ. Для этого, прежде всего, сформулируем требования, которые предъявляются к элюенту в газовой хромато ...

Влияние сульфид-ионов на кинетику и механизм растворения золота в тиокарбамидных растворах
Известно, что в отсутствие на поверхности каталитически активных частиц золото растворяется в тиокарбамидных растворах с очень малой скоростью [1-3]. Кинетика и механизм процесса в этих усло ...