Химические соединения титана
С одновалентными галогенами (фтором, бромом, хлором и йодом) он может образовывать ди- три- и , тетрасоединения, с серой и элементами ее группы (селеном, теллуром) – моно- и дисульфиды, с кислородом – оксиды, диоксиды и триоксиды. Титан образует также соединения с водородом (гидриды), азотом (нитриды), углеродом (карбиды), фосфором (фосфиды), мышьяком (арсиды), а также соединения со многими металлами – интерметаллиды. Образует титан не только простые, но и многочисленные комплексные соединения, известно немало его соединений с органическими веществами. Топ 15 лучших экскурсии на сахалине.
Как видно из перечня соединений, в которых может участвовать титан, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных – золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии? Дело в том, что реакций титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем (1А=10-10м) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту пленку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею «пассивируется», т. е. защищает сам себя от дальнейшего разрушения.
Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах. Противостоит титан и эрозионной коррозии, происходящей в результате сочетания химического и механического воздействия на металл. В этом отношении он не уступает лучшим маркам нержавеющих сталей, сплавам на основе меди и другим конструкционным материалам. Хорошо противостоит титан и усталостной коррозии, проявляющейся часто в виде нарушений целостности и прочности металла (растрескивание, локальные очаги коррозии и т. п.). Поведение титана во многих агрессивных средах, в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи, вызывает удивление и восхищение этим металлом.
В азотной кислоте, являющейся сильным окислителем, в котором быстро растворяются очень многие металлы, титан исключительно стоек. При любой концентрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана не превышает 0,1–0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщенная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Однако стоит добавить в такую кислоту хотя бы немного воды (1–2% и более), как реакция заканчивается и коррозия титана прекращается.
В соляной кислоте титан стоек лишь в разбавленных ее растворах. Например, в 0,5%-ной соляной кислоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при комнатной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С–0,58 мм/год.
При
нагревании скорость коррозии титана в соляной кислоте резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана составляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С – уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.
В серной кислоте слабой концентрации (до 0,5–1% ) титан стоек даже при температуре раствора до 50–95° С. Стоек он и в более концентрированных растворах (10–20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005–0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10–20%-ной) начинает растворяться, причем скорость коррозии достигает 9–10 мм/год. Серная кислота, так же как и соляная, разрушает защитную пленку диоксида титана и повышает его растворимость. Ее можно резко понизить, если в растворы этих кислот добавлять определенное количество азотной, хромовой, марганцевой кислот, соединений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяющийся в «царской водке»: в ней при обычных температурах (10–20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей «царской водке», а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.
Смотрите также
Полистирол
...
Металлы и сплавы в химии и технике
Химические
элементы – это элементы образующие в свободном состоянии простые вещества с
металлической связью. Из 110 известных химических элементов 88-металлы и только
22-неметаллы.
Такие ...
Вода, дарующая жизнь
Вода - первоисточник жизни. То, без чего невозможна жизнь.
Вода — единственная субстанция, которая встречается в природе в трех формах:
твердой (лед), жидкой и в виде газа.
Хроническое об ...