Детерминанты направленности химической эволюции
Направленность химической эволюции является прежде всего выражением, всеобщей направленности, определяющей всю бесконечную последовательность основных форм материй, вплоть до человека. Так как химическое возникает на физического и существует на его основе, химическая направленность опирается на исходные для нее физическую направленность и направленность, заложенную в химических элементах. Последние заключает в себе тенденцию к соединению, к прямому субстратному синтезу и в этом смысле направленность развития является «априорной» по отношению к химической эволюции. На каждой ступени химической эволюции направленность развития дооформляется и развивается в ходе субстратных синтезов в этом плане выступает уже как «апостериорная».
Что определяет направленность химической эволюции от простого к сложному, к возникновению живого? По этому ключевому вопросу в естественнонаучной и философской литературе существуют две основные точки зрения. Одни ученые (А.И. Опарин, Дж. Бернал, В.И. Кузнецов) считают, что фактором, определяющим развитие химического в сторону живого, является химический отбор, который дает оценку развивающихся химических систем относительно среды. В процессе отбора таких химических систем сохраняются и продолжают эволюционировать все более сложные системы. «Выживаемость» химических систем обусловлена усложняющимся химическим содержанием систем.
Согласно второй точке зрения направленность химической эволюции определяется внутренними ограничениями, вытекающими из свойств химических элементов и их соединений. Не среда совершенствует химическое, а химическое совершенствует само себя при сопоставлении со средой (посредством химического отбора наиболее устойчивых систем). Активным фактором отбора оказывается, с этой точки зрения, само химическое, «отбор есть самоотбор «под углом зрения» соответствия среде». Фактически к этой точке зрения подходил и А.И. Опарин, который подчеркивал способность химической материи к саморазвитию.
В разработанной А.П. Руденко теории саморазвития открытых каталитических систем объектом химической эволюции рассматривается не молекула, а каталитическая система, включающая взаимодействующие молекулы, катализаторы и химическую среду. Основным показателем развития каталитической системы является абсолютная каталитическая активность, рост которой служит основой эволюционных изменений каталитической системы, ее усложнения, которое происходит с нарастающей вероятностью.
Паритетность химических синтезов является относительной, ибо химические элементы неравноценны по своему химическому содержанию и, следовательно, эволюционному потенциалу. Поскольку наиболее богатым химическим элементом является углерод, с ним связано магистральное направление химической эволюции. Атомы углерода образуют так называемую полипептидную связь, последовательность сотен тысяч атомов углерода, к которой могут присоединяться любые другие химические атомы и их группы. Химическая эволюция приводит к появлению такого химического субстрата, который получает все более богатое химическое содержание и становится основой химической эволюции, приобретает автономность и устойчивость. Субстратный синтез теряет при этом свой прежний «паритетный» характер, постепенно исчерпывает себя, а развивающийся химический субстрат становится все более способным к самостоятельной эволюции, к саморазвитию. Важнейшим свойством такого субстрата оказывается самосохранение, которое осуществляется благодаря тому, что химическая диссоциация превращается в средство поддержания синтеза, поддержания целостности автономного субстрата. Когда химический процесс оказывается таким образом «замкнутым на самого себя», т.е. становится средством поддержания целостности материальной системы, химический субстрат превращается в живую материю, а химический процесс становится жизненным процессом. По глубокому замечанию Ф. Энгельса, жизнь — это самосохраняющийся химический процесс. Жизнь, таким образом, является закономерным и необходимым результатом химической эволюции природы.
Смотрите также
Витамины и организм человека
Витамины – низкомолекулярные органические соединения различной
химической природы, необходимые для осуществления важнейших процессов,
протекающих в живом организме.
Для нормальной
жизнед ...
Основы теории и основные понятия процесса хроматографического разделения
Процесс
хроматографического разделения очень сложен, тем не менее, его отдельные стадии могут быть смоделированы и представлены в
виде уравнений, достаточно точно и верно отражающих реальный ...
Перечень условных сокращений, обозначений, применяемых в
проекте.
АК - азотная кислота
СК - серная кислота
НКЛ – нитрокаллоксилин
ОК - отработанная кислота
ВКУ – вихревое контактное устройство
АСУТП – автоматизированные системы
управления технологич ...