Барий - Удача сапожника из Болоньи
С.И. Венецкий
В 1602 году болонский сапожник и по совместительству алхимик Касциароло подобрал в окрестных горах камень, который оказался настолько тяжелым, что не заподозрить в нем присутствие золота мог только полный профан. Но Касциароло был не таков. Перед ним засияли радужные перспективы, и он, притащив находку в свою сапожно-алхимическую мастерскую, тут же принялся за работу.
Для начала решено было прокалить камень с углем и олифой. И хоть выделить золото при этом почему-то не удалось, опыт принес явно обнадеживающие результаты: охлажденный продукт прокаливания светился в темноте красноватым светом.
Будучи человеком общительным, Касциароло не стал скрывать от своих коллег-алхимиков тайну необычного камня. Это сенсационное сообщение привело золотоискательскую братию в состояние поисковой горячки: найденный минерал, получивший ряд названий - "солнечный камень", "болонский камень", "болонский самоцвет", стал главным участником всевозможных реакций и экспериментов. Но время шло, золото и не думало выделяться, и интерес к новому минералу постепенно пропал.
Лишь спустя полтора столетия, в 1774 году, известные шведские химики Карл Шееле и Юхан Ган подвергли "болонский камень" тщательному исследованию и установили, что в нем содержится особая "тяжелая земля", которую сначала назвали "барот", а затем - "барит" (от греческого слова "барос" - тяжелый). Сам же металл, образующий эту "землю", был наречен барием.
В 1808 году англичанин Гэмфри Дэви электролитическим путем выделил из барита металлический барий. И поскольку он оказался сравнительно легким металлом (плотность 3,7 г/см3), английский химик Кларк предложил сменить название "барий", не соответствующее его истинному положению среди других металлов, на "плутоний" - в честь мифического властителя подземного царства бога Плутона. Однако предложение Кларка не встретило поддержки у других ученых, и легкий металл продолжал именоваться "тяжелым" (в русской химической литературе начала XIX века этот элемент иногда фигурировал под названием "тяжелец"). Заметим, что по современной технической классификации барий - действительно самый тяжелый представитель группы . легких металлов.
В наши дни металлический барий - мягкий белый металл - получают алюминотермическим восстановлением его оксида. Впервые этот процесс осуществил русский физико-химик Н. Н. Бекетов, положивший тем самым начало алюминотермии.
Вот как ученый описывает свои опыты: "Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния (т. е. алюминия - прим. автора.) в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния ." Сейчас этот процесс проводится в вакууме при 1100 - 1200 °С. Одновременно с восстановлением оксида бария алюминием происходит дистилляция восстановленного бария, который затем конденсируется в чистом виде.
Барий химически очень активен; он легко самовоспламеняется при нагреве или от удара, хорошо взаимодействует с кислородом (блестящая поверхность только что полученного бария на воздухе быстро покрывается пленкой оксида), азотом, водородом, водой, поэтому его, как и некоторые другие металлы со "вспыльчивым характером", приходится хранить под слоем керосина. Отчасти этим объясняется весьма ограниченное применение металлического бария. Основная его "специальность" - поглотитель остаточных газов (геттер) в технике глубокого вакуума. В небольших количествах барий используют в металлургии меди и свинца для раскисления, очистки от серы и газов. Часть бария идет на изготовление подшипниковых и типографских сплавов: их основной компонент свинец становится заметно крепче, приняв даже малые дозы бария. Сплав этого элемента с никелем служит для изготовления электродов запальных свечей двигателей и деталей радиоламп.
Смотрите также
Заключение
В результате исследований был опредёлён оптимальный химический
состав композиции для шпаклевания листа из ударопрочного полистирола и АВС. Рекомендуемые
соотношения реагентов приведены в та ...
Синтез метанола
...
Биохимия углеводов в организме человека
Важнейшими
химическими соединениями живых организмов являются углеводы. Они широко
распространены в природе, в растительном мире они составляют 70-80% из расчета
на сухое вещество, у животн ...