Алюминий и его сплавы

Научная литература / Алюминий и его сплавы
Страница 1

Алюминий – светло-серебристый металл, имеющий кристаллическую решетку гранецентрированного куба с периодом 4,0413 Å. Не испытывает полиморфных превращений. Алюминий – легкий металл, его удельный вес 2,703 г/см3 при 20 ˚С. В связи с этим алюминий является основой сплавов для легких конструкций, например в авиационной технике. Алюминий обладает высокой электропроводностью (65% от меди), поэтому алюминий в большом объеме используется в качестве проводниковых материалов в электротехнике. Чистый алюминий обладает высокой коррозионной стойкостью в связи с образованием на его поверхности стойкой и плотной окисной пленки Al2O3. Это свойство сохраняется и во многих сплавах, содержащих алюминий в виде легирующих элементов.

Примеси, присутствующие в алюминии, понижают его пластичность, электро- и теплопроводность, снижают защитное действие пленки. В технически чистом алюминии в качестве примесей могут находиться, в основном, Fe и Si.

Железо очень мало растворимо в алюминии, и уже при тысячных долях процента при низких температурах появляется новая фаза FeAl3. Эта фаза, как считают в последнее время, является одной из виновниц высокой устойчивости и наследственности литой структуры алюминия и его сплавов, когда дендритное строение можно наблюдать даже после очень больших степеней пластической деформации (50-90%) и последующего рекристаллизационного отжига. Железо уменьшает электропроводность и химическую стойкость чистого алюминия.

Кремний в алюминии вместе примесями железа образует эвтектику из твердого раствора на основе алюминия и кристаллов FeSiAl5, которая имеет форму китайских иероглифов. Для нейтрализации вредного влияния железа сплавы легируют марганцем, за счет чего в сплавах формируется соединение (Fe, Mn)3Si2Al15, которое первично кристаллизуется из расплава в виде компактных ограненных кристаллов, что способствует повышению пластичности, если эти кристаллы достаточно мелкие. Хром также вводят в силумины для нейтрализации отрицательного влияния железа.

При небольших содержаниях кремния, (до 0,4%) он находится в твердом растворе. Отжигом можно перевести в твердый раствор до 1,3% Si. Кремний является менее вредной примесью в алюминии, чем железо, хотя также как и железо, уменьшает пластичность, электропроводность, коррозионную стойкость сплавов. В больших количествах кремний применяется в сплавах на основе алюминия, как легирующий элемент.

Алюминий и алюминиевые сплавы производят по ГОСТ 11069-74 - Алюминий первичный, ГОСТ 1583-93 - Сплавы алюминиевые литейные, ГОСТ 4784-74 - Алюминий и сплавы алюминиевые, деформируемые.

Литейные алюминиевые сплавы по ГОСТ 1583-93 маркируют буквами и цифрами с указанием среднего химического состава по основным легирующим элементам. В действующем ГОСТе указана и старая система маркировки – условное обозначение марок, содержащее буквы АЛ.

Все литейные алюминиевые сплавы, указанные в ГОСТ 1583-93, в зависимости от химического состава подразделяют на пять групп:

I группа – сплавы на основе системы Al-Si. В нее входят сплавы марок АК12, АК13, АК9, АК9с, АК9ч, АК9пч, АК8л, АК7, АК7ч, АК7пч, АК10Су.

II группа – сплавы на основе системы Al-Si-Cu. В нее входят сплавы марок АК5М, АК5Мч, АК5М2, АК5М7, АК6М2, АК8М, АК5М4, АК8М3, АК8М3ч, АК9М2, АК12М2, АК12ММгН, АК12М2МгН, АК21М2,5Н2,5.

III группа – сплавы на основе системы Al-Cu. В нее входят сплавы марок АМ5, АМ4,5Кл.

IV группа – сплавы на основе системы Al-Mg. В нее входят сплавы марок АМг4К1,5М, АМг5К, АМг5Мц, АМг6л, АМг6лч, АМг10, АМг10ч, АМг11, АМг7.

V группа – сплавы на основе системы алюминий – прочие компоненты. В нее входят сплавы марок АК7Ц9, АК9Ц6, АЦ4Мг.

Термическую обработку литейных алюминиевых сплавов проводят по режимам: Tl - искусственное старение без предварительного нагрева под закалку, Т2 - отжиг, Т4 - закалка, Т5 - неполное искусственное старение, Т6 - полное искусственное старение, Т7 - стабилизирующее старение.

Искусственному старению преимущественно подвергают сплавы на основе системы Al-Si. Обработка по режиму Tl возможна в тех случаях, когда при ускоренном охлаждении отливки по окончании ее затвердевания, например при литье тонкостенных деталей в кокиль, образуется пересыщенный твердый раствор. Такая обработка экономически эффективна, но упрочнение при старении невелико, так как из-за дендритной ликвации сердцевина дендритных ячеек имеет низкую концентрацию легирующих элементов. Обработке по режиму T1 наиболее целесообразно подвергать детали, полученные литьем под давлением. Такие детали, как правило, нельзя закаливать из-за того, что при нагреве под закалку на их поверхности образуются вспучивания в результате расширения газа, захваченного при литье под давлением. Отжиг отливок (режим Т2) проводят, в основном, для сплавов I группы. Этот вид термообработки применяют для уменьшения литейных напряжений. Температура такого отжига около 300°С, выдержка 2 .4 ч. Закалке без последующего искусственного старения (режим Т4) подвергают сплавы на основе системы Al-Mg. Термическую обработку по режиму Т4 применяют в тех случаях, когда необходима повышенная пластичность при прочности меньшей, чем после искусственного старения, или же повышенная стойкость против коррозии. Обработка по режиму Т6 включает закалку и полное искусственное старение для достижения максимального упрочнения. Обработка по режиму Т5 состоит из закалки и неполного искусственного старения при температуре более низкой, чем при обработке по режиму Т6. Цель такой обработки - обеспечить повышенную пластичность (по сравнению с обработкой Т6). Термическая обработка по режимам Т5 и Т6 проводится в основном для сплавов системы Al-Si. Режим Т7 - это закалка и стабилизирующее старение (перестаривание), проводимое при температуре более высокой, чем по режиму Т6 для стабилизации свойств и размеров деталей первых трех групп литейных алюминиевых сплавов. Время выдержки при нагреве под закалку разных сплавов колеблется от 2 до 16 ч. Отливки закаливают в холодной воде. Для уменьшения закалочных напряжений воду подогревают до 80 .100°С.

Страницы: 1 2 3 4 5 6

Смотрите также

Химия лантаноидов
Судя по последним публикациям, нынче довольно трудно отметить те стороны жизни, где бы не находили применение лантаноиды. На основе лантаноидов получают многие уникальные материалы, кото ...

Жидкофазное каталитическое окисление фенольных соединений
Непрерывный рост и развитие промышленного сектора экономики приводит к постоянному увеличению загрязнения окружающей среды. Одну из наиболее высоких экологических нагрузок испытывают на себе ...

Приложение 2
Добыча нефти, включая газовый конденсат в СССР по годам Годы            1920 1940 1950 1960 1970 1975 1980 1985 _______________________________________________________ Кол-во                 ...