Элементы теории многоэлектронных атомов

Страница 2

Отдельные диагональные слагаемые этой таблицы равны Vi= –Ze2/ri. Каждое из них представляет из себя энергию электростатического кулоновского притяжения одного из электронов к ядру. Недиагональные слагаемые Vij=+Ze2/rij. Полное выражение электростатической потенциальной энегии в атоме: Результирующий эффективный потенциал межэлектронного отталкивания превращается в эффективный потенциал "экранирования" ядра:

s(ri) - заряд экранирования (функция экранирования) отдельного электрона внутренними электронами, более близкими к ядру.

В этом случае потенциальная кулоновская энергия притяжения всех электронов к ядру дополняется эффективной потенциальной функцией экранирования ядра, и получается эффективное приближённое аддитивное выражение для всей кулоновской потенциальной энергии электронной оболочки

Микросостояния и атомные термы в приближении Рассела-Саундерса.

Этот раздел целесообразно рассмотреть на конкретных примерах.

Содержание. Электронная конфигурация. Микросостояния и их систематизация. Порядок учёта кулоновских взаимодействий и постадийная классификация дискретных электронных уровней и состояний атома (электронно-ядерное притяжение и орбитальные уровни, межэлектронное отталкивание и атомные термы Рассел-Саундерса, спин-спиновая корреляция и запрет Паули). Суммарные квантовые числа ML,MS,L,S. Атомное внутреннее квантовое число J. Термы нормальные и обращённые. Правила Хунда (1-е, 2-е и 3-е). Относительная шкала энергии атомных термов. Спектральные переходы и правила отбора. Атомные уровни в магнитном поле, эффект Зеемана (практикум).

Электронная конфигурация представляет собой исходное понятие. Оно определяется в нулевом приближении в оценке энергии. Далее постепенно учитываются всё более тонкие взаимодействия, и возникает более точная картина состояний и уровней многоэлектронного атома. Если атомный подуровень заселён неполностью, то возникает несколько различных микросостояний. Их характеристики непосредственно определяются комбинаторикой размещений электронов в системе спин-орбиталей.

Если n электронов заселяют g спин-орбиталей, то одно из формальных обозначений конфигурации (g,n). В её пределах число возможных микросостояний определяется согласно статистике Ферми: W(g,n) = g! / [n! (g - n) !].

Пример 1: основная электронная конфигурация атома углерода C (1s22s22p2)

Конфигурация p2 (атомы IV группы элементов C, Si. .). W(6,2) = 6! / [2! (6 - 2) !] =15

Перечислим все возможные варианты орбитальных размещений и спиновых комбина-ций 2-х электронов на трёх АО:

Орбитальные распределения двух электронов

Возможно всего шесть размещений внутри p-АО без учёта спина Орбитальные распре-деления можно охарак-теризовать комбинаци-ями квантовых чисел частиц (m1, m2):

(+1,+1) А (0, 0) Б (- 1, - 1) В (+1, 0) Г (+1, - 1) Д (0, - 1) Е

Комбинации пространственных (орбитальных) состояний частиц в коллективе легко описать разными способами. Возможные спиновые комбинации в системе двух частиц-фермионов с половинным спином (электронов, протонов,. .) можно представить разными способами. Можно изобразить ориентации спинов разными символами (стрелками, знаками или греческими буквами). Результат сложения компонент момента импульса вдоль оси вращения представми в одной из строк таблицы значениями суммарного магнитногоквантового числа. Все возможные комбинации спиновых векторво отдельных электронов попадут в таблицу:

Способ 1

­­

­Ї

Ї­

ЇЇ

Эти три способа

Способ 2

(++)

(– +)

(–+)

(– –)

Описания

Способ 3

aa

ab

ba

bb

Идентичны

Можно как-либо еще, а в итоге будет:

где

MS(1,2) = mS(1) + mS(2)

MS(1,2)

1

0

0

-1

Страницы: 1 2 3

Смотрите также

Газовая хроматография и определение этанола в метаноле методом внутренней нормализации
Производственная лаборатория химического анализа и контроля за качеством продукции (далее лаборатория) является структурным подразделением службы главного технолога ООО «Сибметахим» и п ...

Полимеры и их конформации
Полимерные молекулы представляют собой обширный класс соединений, основными отличительными характеристиками которых являются большая молекулярная масса и высокая конформационная гибкость цеп ...

Барий. Свойства, получение, распространение
Тяжелый шпат, BaSO4 , был первым известным соединением барин. Его открыл в начале XVII в. итальянский алхимик Касциароло. Он же установил, что этот минерал после сильного нагревания с углем ...