Химическая реакция, ее скорость, кинетика и катализ, биокатализаторы
Для установления состава химических соединений очень важен закон постоянства их состава. Положения этого закона позволили химикам отделять настоящие химические соединения от простых смесей. Впервые в истории химии этот закон был сформулирован французским химиком Ж. Прустом в начале XIX в.:
► Любое индивидуальное химическое соединение обладает строго определенным неизменным составом, прочным притяжением составных частей и тем самым отличается от смесей.
Теоретически закон постоянства состава обосновал английский естествоиспытатель Д. Дальтон в своем знаменитом законе кратных отношений: «соединения состоят из атомов двух или нескольких соединений, образующих определенные сочетания друг с другом». В его честь все химические соединения постоянного состава (а их подавляющее большинство среди веществ) называют дальтонидами.
Закон постоянства состава вещества использовал и Д. И. Менделеев при разработке своей периодической системы – постоянство состава соединений, которые может образовывать данный элемент, следует из его положения в периодической таблице Менделеева. Представление о составе вещества – одно из концептуальных понятий для химии как естественной науки. Постоянство состава химических соединений обусловлено физической природой химических связей, объединяющих атомы в одну квантово-механическую систему – молекулу.
Необходимость выработки строгих научных принципов относительно состава вещества позволила химикам успешно развить строгое научное понятие химической реакции как процесса образования новых химических соединений. В химической реакции участвуют исходные вещества, которые реагируют друг с другом и с течением времени превращаются в новые вещества, называемые продуктами реакции. Из закона постоянства состава вещества следует постоянство не только состава молекул продуктов реакции, но и постоянство количественных соотношений (массовых долей) исходных веществ.
► Стехиометрия – раздел химии, в котором рассматриваются массовые или объемные отношения между реагирующими веществами. Законы стехиометрии так же непреложны, как и любые другие естественнонаучные законы; кроме того, их знание очень полезно для прикладной химии, потому что позволяет количественно рассчитать выход химической реакции и необходимое количество исходных веществ.
Процесс получения новых химических соединений с учетом сте-хиометрических соотношений обычно записывается в виде уравнения химической реакции, например:
6HCL + 2HNO3 = 3CL2 + 2NO + 4H2O,
где
♦ химические формулы слева от знака равенства обозначают исходные вещества;
♦ химические формулы справа от знака равенства обозначают продукты реакции;
♦ цифры перед формулами химических соединений являются так называемыми стехиометрическими коэффициентами; они раскрывают массовые (или объемные) соотношения веществ.
В уравнении химической реакции нашел свое отражение еще один фундаментальный закон естествознания – закон сохранения вещества, открытый нашим соотечественником М. В. Ломоносовым и независимо от него – французом А. Л. Лавуазье. Именно в соответствии с этим законом и получается математическое выражение – уравнение: масса данного элемента слева от знака равенства должна быть равна массе этого же элемента справа от знака равенства, а стехиометрические коэффициенты уравнивают (не только математический, но и химический термин!) данную реакцию.
Проникновение математических понятий, выражений, терминов (уравнения, коэффициенты) в химию, смешение терминологий означает, что на важном историческом этапе формирования химии как науки (XVIII–XIX вв.) она развивалась в соответствии с научной парадигмой того времени – классической механикой. Применительно к химии эта парадигма могла бы быть выражена следующим образом: любой закон природы можно представить в виде математического соотношения, записываемого с участием химических формул.
Еще один интересный случай проникновения классического ньютоновского подхода в химию – понятие о скорости химической реакции. Пытаясь получить новые химические соединения, ученые-химики разных эпох неоднократно отмечали тот факт, что некоторые вещества реагируют друг с другом мгновенно, часто со взрывом, а другие – медленно, в течение нескольких часов (суток). Скорости многих химических процессов были установлены эмпирическим путем. И для вычисления скорости химических реакций было использовано ньютоновское представление о времени как о не зависящей от свойств вещества и пространства простой длительности. Процесс химической реакции можно рассматривать как процесс изменения концентраций начальных и конечных продуктов реакции, и, согласно классической механике, для любого процесса изменения (движения) во времени всегда можно рассчитать скорость этого изменения.
Современные квантовые представления о химических процессах рассматривают химическую реакцию как перераспределение электронов между статистически вероятными энергетическими уровнями участвующих молекул, создание межмолекулярных промежуточных реакционных комплексов и получение новых продуктов как энергетически выгодных состояний молекул. В рамках этих представлений классическая скорость реакций не имеет смысла, так как каждое новое энергетическое состояние рассматривается в рамках пространственно-временного континуума и перебор энергетических состояний продолжается до достижения наиболее энергетически выгодного. Тем не менее, классические представления о химических процессах активно используются в современной химии, особенно в прикладных областях химии и в химических науках, лежащих «на стыке» с биологией, – биохимии, молекулярной биологии и др.
Смотрите также
Витамины и организм человека
Витамины – низкомолекулярные органические соединения различной
химической природы, необходимые для осуществления важнейших процессов,
протекающих в живом организме.
Для нормальной
жизнед ...
Современные и перспективные требования и технологии к качеству
тяжелых моторных и судового маловязкого топлива
Настоящие
технические условия распространяются на топливо маловязкое судовое получаемое
из дистиллятных фракций прямой перегонки и вторичной переработки нефти.
Топливо
маловязкое судов ...
Димеризация, олигомеризация и полимеризация этилена под действием комплексов никеля, содержащих хелатные лиганды
Реакции этилена, приводящие к образованию димеров, олигомеров и полимеров
этилена представляют существенный интерес для химической промышленности. Эти
реакции могут приводить к образованию л ...