Системы железа с углеродом
Взаимодействие железа и углерода, природа фаз, характер фазового равновесия в системе и сама диаграмма железо–углерод определяется электронным строением железа и углерода.
Железо в металлическом состоянии в реальных условиях, описываемых диаграммой железо–углерод, отдает два его внешних валентных электрона с оболочкой 4s2 в коллективизированное состояние. Открывающиеся при этом орбитали d6 электронной оболочкой перекрываются, образуя решетку объемно–центрированного куба (ОЦК). Такое электронное строение свойственно альфа и дельта–железу.
В интервале температур от 911 до 1392 ˚С d6 - орбитали не перекрываются, в связи с чем сферическая симметричная электронная конфигурация электронной оболочки обеспечивает образование плотной упаковки гранецентрированного куба, отвечающей решетке гамма–железа.
Электронная конфигурация атомов углерода 1S2 2S2 2p2. Четыре электрона на внешней оболочке могут переходить либо в коллективизированное состояние при образовании растворов, либо принимать участие в валентных связях при образовании химических соединений. Кроме того, внешняя оболочка углерода может заполняться до уровня 2S2 2p6 при образовании металлических карбидов.
Углерод в системах с железом при нормальном давлении может находиться в свободном состоянии в виде графита, а также в растворенном состоянии в твердых и жидких растворах. Кроме того, он образует карбиды, например, цементит Fe3C.
Цементит – соединение с преимущественной ковалентной связью, усиленной небольшой долей ионной связи между ионами железа и углерода, а также металлической связью. Наличие некоторой части металлической связи в цементите обусловливает его проводимость в связи с появлением в связи с ней некоторой электронной концентрации.
При образовании цементита происходит обмен электронами между соседними атомами железа и углерода по одному d-электрону иона Fe2+ с конфигурацией d6 и электроном внешней оболочки атома углерода. У атома углерода принимают участие в образовании связей шесть валентных электронов, захваченных на уровень 2p. Шесть орбиталей 2p6–оболочки перекрываются с шестью d-орбиталями шести ближайших атомов железа (d6). При этом возникают шесть обменных двухэлектронных связей ковалентного типа, определяя преимущественную ковалентную связь в решетке цементита.
Графит имеет гексагональную слоистую структуру вследствие возникновения полуторных связей между атомами углерода.
При растворении углерода в железе, его атомы теряют валентные электроны, которые коллективизируются и переходят в электронный газ вместе с электронами железа. Оголяющаяся при этом 1S2 электронная конфигурация иона углерода приобретает сферическую конфигурацию и имеет очень малый размер (около 1,1 кХ). Это позволяет размещаться ионам углерода в октаэдрических пустотах ГЦК и ОЦК решеток железа, образуя твердые растворы внедрения: g-твердый раствор (аустенит), a-феррит и d-феррит.
Жидкие растворы углерода в железе выше температуры плавления сплавов в системе железо – углерод имеют то же электронное строение, что и твердые растворы: d-феррит и g-аустенит. При плавлении сохраняется тот же ближний порядок в кристаллическом строении сплавов, который наблюдался до плавления в данном сплаве в твердом состоянии. При плавлении нарушается лишь дальний порядок.
Фазовые состояния железоуглеродистых сплавов, в зависимости от состава и температуры, описываются диаграммами стабильного и метастабильного равновесия. Термодинамический анализ показывает, что наиболее стабильной системой, образованной двумя компонентами: железом и углеродом, является система железо – графит. Метастабильной является система железо – цементит.
Диаграмма железо – графит построена в условиях очень медленного нагрева и охлаждения (доли градуса в минуту). Диаграмма железо – цементит строится в условиях более высоких скоростей нагрева и охлаждения (порядка нескольких градусов в минуту).
Диаграммы позволяют описать как фазовый состав, так и структуру сплава. В этом случае диаграммы называют, соответственно, фазовой или структурной. Часто обозначения фазового и структурного состава сплавов объединяют.
Смотрите также
Галлий
Галлий
31
Ga
3 18 8 2
ГАЛЛИЙ
69,72
4 ...
Использование альтернативных источников энергии
Во второй половине ХХ столетия перед
человечеством восстала глобальное проблема – это загрязнение окружающей среды
продуктами сгорания органического топлива. Даже если рассматривать отдельно ...