Современные квантово-химические представления о валентности

Полезные материалы / Валентность и степень окисления / Современные квантово-химические представления о валентности
Страница 2

В комплексных соединениях координационное число центрального атома часто больше числа электронов в его валентной оболочке. Важную роль здесь играют донорно-акцепторная связь и дативные связи, образующиеся за счёт неподелённой электронной пары (то есть пары электронов с противоположными спинами, занимающих одну АО) одного атома и пустой орбитали другого. Соответственно должны быть расширены и представления о В.: способность к образованию связей, а следовательно и В. атома, обусловливается не только неспаренными электронами, но и неподелёнными парами и пустыми орбиталями валентной оболочки. Наибольшая суммарная В. должна быть равна числу всех АО, составляющих валентную оболочку атома, поскольку каждая валентная АО, независимо от того, сколькими электронами она заселена у атома в валентном состоянии, потенциально способна образовать одну связь (гайтлер-лондоновскую, донорно-акцепторную или дативную). В рамках этой концепции максимальная В. всех элементов второго периода от Li до F равна 4 (одна s-opбиталь + три р-орбитали), у элементов следующих периодов - 9 (за счёт ещё пяти d-opбиталей) и т.д. Решение же вопроса о том, какие из этих четырёх или девяти В. насыщаются и какие остаются неиспользованными, в соединениях каждого конкретного типа определяется не только свойствами самого атома и его положением в периодической системе, но и особенностями соединения в целом. Полный ответ на него может быть получен с помощью квантово-химических расчётов. За счёт донорно-акцепторного взаимодействия фактическое число связей атома (а следовательно и его В.) в комплексных и даже в простых соединениях в общем случае может быть больше не только числа его неспаренных электронов, но и числа связанных с ним соседних атомов.

Следует помнить, что подразделение связей в соединениях на гайтлер-лондоновские, донорно-акцепторные и дативные имеет, вообще говоря, лишь генетический смысл, поскольку после того как соединение образуется, в нём происходит перераспределение электронной плотности и выравнивание связей: например, в каждом из комплексных анионов типа [BF4]-, [BeF4]2-, [SiFe6] 2-, [АlF6]3-, [ZnF6]4- и др. все связи М - F совершенно одинаковы.

Установлено также, что в солях ион NO3- имеет структуру правильного треугольника, а ионы и - структуру правильного тетраэдра. Теория локализованных пар ограничена в основном несопряжёнными органическими и простыми неорганическими соединениями. Так, в случае "электронно-избыточных" молекул типа PF5, SF6, IF7, XeF6 эта теория не может объяснить осуществления высших В. у атомов Р, S, I, Xe без привлечения валентных состояний с большими целочисленными заселённостями внешних d-opбиталей (sp3d для Р, sp3d3 для I, s2p3d3 для Xe и т.д.); однако энергии возбуждения последних столь велики (200-400 ккал/моль и более), что затраты на их возбуждение вряд ли могут окупиться за счёт выигрыша в энергии при образовании связей. Аналогичные трудности возникают при рассмотрении комплексных соединений, координационных кристаллов и т.д. В "электронно-дефицитных" молекулах типа В2Н6 число связей, образуемых атомом Н, больше числа имеющихся у него валентных АО, так что связи мостиковых Н с двумя атомами В могут быть описаны только трёхцентровыми молекулярными орбиталями, охватывающими фрагменты В - Н - В. В случае ароматических и сопряжённых молекул типа C5H5, C6H6, C7H7 и др., их комплексов с металлами и других производных валентные 2рp-электроны в равной степени принадлежат всем атомам С и могут быть описаны лишь с помощью делокализованных молекулярных орбиталей, охватывающих всё кольцо или углеродный остов в целом. Иными словами, представления о локализованных В. и связях оказались слишком узкими, чтобы вместить все известные типы соединений.

Поэтому естественным следующим шагом в развитии общей теории В. стал метод молекулярных орбиталей, MO, который рассматривает молекулу как совокупность ядер и электронов, где каждый электрон движется в поле остальных электронов и всех ядер. Молекулярные орбитали, описывающие состояние электронов, в общем случае охватывают все атомы молекулы, так что каждый атом способен в принципе образовывать связи со всеми остальными атомами молекулы. Метод МО значительно более общ и последователен, что делает его в принципе пригодным для описания любых классов соединений.

Страницы: 1 2 

Смотрите также

Предисловие редактора перевода
Historia est magistra vitae: История — учитель жизни. По-разному реализовывали этот древний латинский завет историки науки. Иногда история науки использовалась в качестве инструмента оценки нау ...

Химия металлоорганических соединений
В создании химии металлоорганических соединений, переживающих период быстрого и всестороннего развития, принимали участие выдающиеся русские и зарубежные исследователи: А. М. Бутлеров, А. М ...

Определение массы полимера криоскопическим способом
Мы выбрали тему – «Определение молекулярной массы вещества криоскопическим методом». Изучая высокомолекулярные соединения, мы отметили, что их важной характеристикой является молекулярная м ...