Второе начало термодинамики.
Первого начала термодинамики недостаточно для полного описания термодинамических процессов. Оно позволяет точно найти энергетический баланс этих процессов, но не дает никаких указаний об их направлении и о возможности их протекания. Другой общей закономерностью, позволяющей находить направление и устанавливать возможность или невозможность этих процессов, является второе начало термодинамики. Кроме того, второе начало устанавливает те условия, при которых превращение какого-либо запаса тепловой энергии в полезную работу будет проходить наиболее полно.
Второе начало термодинамики, так же как и первое начало, является результатом обобщения многолетнего человеческого опыта и, следовательно, опирается на огромный накопленный экспериментальный материал.
Исторически второе начало термодинамики было сформулировано гораздо раньше первого начала, но со временем оно получало все новое и новое толкование, а его формулировки
становились все более строгими. Впервые основное положение второго начала было дано М. В. Ломоносовым (1747 г.). В работе «Размышления о причинах теплоты и | стужи» Ломоносов говорит: «Если более теплое тело А приходит в соприкосновение с другим телом Б, менее теплым, то находящиеся н точке соприкосновения частички тела А быстрее вращаются, чем соседние с ним частички тела Б. От более быстрого вращения частички тела А ускоряют вращательное движение частичек тела Б, т. е. передают им часть своего движения; сколько движения уходит от первых, столько же прибавляется ко вторым. Поэтому когда частички тела А ускоряют вращательное движение частичек тела Б, то замедляют свое собственное. А отсюда когда тело А при соприкосновении нагревает тело Б, то само оно охлаждается» . и далее, «Тело А при действии на тело Б не может придать последнему большую скорость движения, какую имеет само. Если поэтому тело Б холодное и погружено в теплое газообразное тело А, то тепловое движение частичек тела А приведет в тепловое движение частички тела Б, но в частичках тела Б не может возбудить более быстрое движение, чем какое имеется в частичках тела А. Поэтому холодное тело Б, погруженное в тело А, не может воспринять большую степень теплоты, чем какую имеет тело А».
Первая математическая формулировка условий превращения теплоты в полезную работу была сделана Сади Карно (1824 г.). Им же были выведены следствия, имеющие большое значение для конструирования паровых машин. В работах немецкого физика Клаузиуса (1850 г.) и английского физика Томсона (лорда Кельвина) (1851 г.) Пыли развиты идеи, которые вышли далеко за пределы первоначально поставленной теплотехнической задачи. ( Принцип Карно: для производства работы тепловой машины необходимы по крайне мере два источника теплоты с различными температурами; цикл Карно; постулат Карно-Томсона: равенство суммарного количества теплоты и суммарного количества работы нулю в круговом квазистатическом процессе; постулат Клаузиуса: невозможность осуществления холодильного цикла Карно, при котором источник работы совсем бы не произвел работы над системой, а холодильник отдал бы системе конечное, отличное от нуля количество теплоты и нагреватель, следовательно, получил бы от системы, по принципу эквивалентности, то же количество теплоты)
Несколько позже Максвелл, Больцман и Гиббс установили связь второго начала с молекулярно-кинетическими представлениями. Это привело к статистическому толкованию второго начала термодинамики.
Некоторые из формулировок второго начала наглядны и непосредственно связаны с опытом, другие более абстрактны, но являются более удобными для математического развития теории. По Томеону: «Различные виды энергии стремятся переходить в теплоту, а теплота, в свою очередь, стремится рассеяться, т. е. распределиться между всеми телами наиболее равномерным образом». В этой формулировке содержится представление о том, что в природе происходит процесс рассеяния тепловой энергии, вследствие чего второе начало термодинамики иногда называют законом рассеяния или деградации тепловой энергии. По Клаузиусу: «Теплота никогда не переходит с более холодного тела на более горячее, тогда как обратный переход протекает самопроизвольно».
Подобно тому, как первое начало вводит функцию состояния— внутреннюю энергию, второе начало в форме, приданной ему дальнейшими работами Клаузиуса, вводит новую функцию состояния, названную им энтропией. Согласно второму началу, в то время как внутренняя энергия изолированной системы остается неизменной, ее энтропия при всех самопроизвольных процессах увеличивается.
К вышесказанному необходимо также добавить, что содержание второго начала иногда формулируется как невозможность создания perpetuum mobile второго рода, представляющего собой такую машину, которая заимствует тепло из резервуара какой-либо температуры и превращает его в работу, охлаждая этот резервуар и не производя больше никаких изменений в окружающих телах.
Существует еще несколько логически связанных друг с другом формулировок второго начала термодинамики, которые требуют более подробного знакомства с понятием обратимых и необратимых процессов, а также с понятием энтропии.
Смотрите также
Тепловой эффект химической реакции и его практическое применение
Тепловые
эффекты химических реакций необходимы для многих технических расчетов. Они
находят обширное применение во многих отраслях промышленности, а также в
военных разработках.
Целью
д ...
Анализ почвы
Почва –
особое природное образование, сформировавшееся в результате длительного
преобразования поверхностных слоев литосферы под совместным взаимообусловленным
взаимодействием гидросферы, а ...