Теория колебательной спектроскопии. Многоатомная система.

Страница 2

Для вычисления частот колебаний нужно, прежде всего, выразить потенциальную и кинетическую энергии через какие-либо общие координаты, таковыми являются внутренние координаты. Они характеризуют изменения межатомных расстояний и валентных углов, тем самым силовые постоянные приобретают более ясный физический смысл, чем при использовании прямоугольных координат, т.к. эти силовые постоянные являются характеристиками изменений валентных угла и связи. В набор внутренних координат не входят координаты, описывающие поступательное и вращательное движения молекулы как целого. Потенциальная энергия в системе внутренних координат имеет вид

2U=R*FR, (21)

где R – матрица столбец внутренних координат, R* - транспонированная матрица и F – матрица, элементами которой являются силовые постоянные.

Кинетическая энергия в новой системе координат будет иметь вид

2Т = R*G-1R, (22)

где G – матрица, которая определяется следующим образом

G= BM-1B*, (23)

здесь M-1 – диагональная матрица, составленная из элементов mi, где mi – величина, обратная массе i-того атома. Матрица В определяется как

R=BX, (24)

где R и X – столбцовые матрицы, элементами которых являются соответственно внутренние и декартовы координаты атомов. Вековое уравнение в системе внутренних координат примет вид

çGU - El ê=0, (25)

где Е – единичная матрица, а l связано с волновым числом u соотношением l = 4p2с2u2.

Окончательный вид расчётной спектроскопической задачи в приближении малых колебаний сводится к решению уравнения [1-3, 13,33-36]:

(TF - L)L=0 (26)

T – матрица кинетических коэффициентов (кинетической энергии),

F– матрица силовых постоянных (потенциальной энергии),

L – диагональная матрица квадратов частот колебаний,

L – матрица форм нормальных колебаний (матрица преобразования внутренних координат к нормальным), в которых выполняется соотношение:

L*TL=E; L*FL=L [1-3], (27)

а матрица L определяется из соотношения

R=LQ, (28)

где R и Q – столбовые матрицы, элементами которых являются соответственно внутренние координаты и нормальные координаты.

Решение прямой колебательной задачи (26) может быть представлено различными способами. Обычный способ представления форм колебаний в виде изменения длин связей и углов [1,2] очень громоздок и может привести к ошибочному отнесению линий [36]. Более эффективным при интерпретации спектров является расчёт распределения потенциальной энергии колебаний (РПЭ) по внутренним координатам [37]. Согласно [38], РПЭ может также служить критерием степени характеристичности колебаний.

Для известных матриц T и F решение уравнения (27) (расчёт частот и форм нормальных колебаний – прямая колебательная задача) находится однозначно и является единственным, матрица кинетической энергии T в импульсном представлении при заданной геометрической конфигурации молекулы вычисляется точно. Матрица потенциальной энергии F может быть получена в результате квантово-химических расчётов. Однако такие расчёты требуют значительного машинного времен, памяти и реально могут использоваться для молекул с небольшим числом атомов. Более прост и доступен способ, основанный на аддитивности (квазиаддитивности) силовых и электрооптических постоянных молекул с одинаковыми структурными элементами. В обоих случаях полученные расчётные частоты, как правило, значительно отличаются от экспериментальных. В связи с этим, возникает задача нахождения (уточнения) силовых и электрооптических постоянных по экспериментальным частотам и интенсивностям (обратная спектральная задача – ОСЗ). Способы решения ОСЗ рассматриваются в [1-3]. В отличие от прямой задачи, ОСЗ может не иметь единственного решения. Такая задача является математически не корректной из-за чувствительности результатов к заданию экспериментальных данных, большого числа искомых переменных и плохой обусловленности решаемых уравнений. Для постановки ОСЗ в математически определённой форме, кроме частот и интенсивностей колебаний, необходимо привлечение дополнительных экспериментальных данных: колебательные спектры изотопных разновидностей молекул, изомеров, ближайших членов гомологического ряда, средних амплитуд колебаний и др. [1-5, 39-43,17].

Приближение центральных сил предполагает, что силы, удерживающие атомы в равновесии, зависят от расстояния между атомами. Эта модель не является удовлетворительной при расчёте деформационных колебаний молекул. Приближение валентных сил ближе к химическим представлениям о межатомных силах. В этом приближении рассматриваются силы, которые связаны с изменением длин связей, валентных, линейных, и “межплоскостных” углов в молекулах. Приближение Юри-Бредли включает валентные силы и дополнительные взаимодействия, соответствующие центральным силам между несвязанными атомами. Введение таких дополнительных сил (центральных сил) позволяет учесть функциональную зависимость диагональных и недиагональных силовых постоянных. Однако, как отмечено в [43], модель Юри-Бредли не несёт в себе глубокого физического содержания. В модели обобщённых валентных сил, кроме силовых постоянных валентно-силового поля, вводят недиагональные силовые постоянные взаимодействия валентных координат. Это приближение является наиболее распространённым и близким по смыслу к химическим представлениям о межатомных силах.

Страницы: 1 2 3

Смотрите также

Химия. Белки
...

Технология неконцентрированной азотной кислоты
Азотная кислота по объему производства занимает среди других кислот второе место после серной кислоты. Все возрастающий объем производства HNO3 объясняется огромным значением азотной кислот ...

Цель работы
Цель данной работы состоит в разработке схемы переработки вторичного сырья (в данном случае карбидов тугоплавких металлов режущих инструментов их осколков, кусковые отходы), при заданных производит ...