Химические свойства.

Книги по химии / Химия меди / Химические свойства.
Страница 2

Исследование комплексных соединений меди(П) может быть прове­дено методами протонного резонанса и ЭПР. Боль­шое число работ по ЭПР комплексных соединений меди(II) обуслов­лено устойчивостью этого состояния окисления меди и относительно узкими линиями спектра ЭПР меди(П) в широком интервале темпе­ратур.

Спектры ЭПР комплексов меди(II) в растворах часто имеют хорошо разрешенную сверхтонкую структуру из четырех линий от ядер 63 Сu и 65Сu, ядерный спин которых 3/2.Так как магнитные моменты ядер 63Сu и 65Сu несколько различаются, то в случае узких линий сверхтонкой структуры, например для серосодержащих комплексов, в спектрах ЭПР видны разрешенные линии от ядер 63Сu и 65Сu. При интерпретации спектров ЭПР необходимо учитывать сосуществование в растворах, как правило, нескольких комплексов. Ниже кратко рассматриваются химические свойства меди в различных степенях окисления.

Медь(

I

).

Комплексы меди(I) обычно имеют (в зависимости от при­роды лиганда) линейное или тетраэдрическое строение. Ионы меди(I) содержат десять 3d-электронов и обычно образуют четырех координи­рованные тетраэдрические структуры типа [CuCl4]3-. Однако с сильно­основными высокополяризованными или легко поляризующимися лигандами медь(I) образует двухкоординированные линейные комплексы.

В соединениях меди(I) ион имеет конфигурацию 3d'°, поэтому они диамагнитны и бесцветны. Исключение составляют случаи, когда ок­раска обусловлена анионом или поглощением в связи с переносом заря­да. Относительная устойчивость ионов Сu+ и Сu2+ определяется природой анионов или других лигандов. Примерами устойчивого в воде соединения меди(I) являются малорастворимые CuCl и CuCN, соли Cu2SO4 и других оксоанионов можно получить в неводной среде. В воде они быстро разлагаются, образуя медь металлическую и соли меди(I). Неустойчивость солей меди(I) в воде обусловлена отчасти повышенными значениями энергии решетки и энергии сольватации для иона меди(П), вследствие чего соединения меди(I) неустойчивы.

Оксид меди(I) Сu2О красного цвета, незначительно растворяется в воде. При взаимодействии сильных щелочей с солями меди(I) выпадает желтый осадок, переходящий при нагревании в осадок красного цвета, по-видимому, Cu2O. Гидроксид меди(I) обладает слабыми основны­ми свойствами, он несколько растворим в концентрированных раство­рах щелочей.

Медь(

II

).

Двухзарядный положительный ион меди является ее наиболее распространенным состоянием. Большинство соединений меди(I) очень легко окисляется в соединения двухвалентной меди, но дальнейшее окисление до меди(Ш) затруднено.

Конфигурация 3d9 делает ион меди(II) легко деформирующимся, благодаря чему он образует прочные связи с серосодержащими реаген­тами (ДДТК, этилксантогенатом, рубеановодородной кислотой, дитизоном). Основным координационным полиэдром для двухвалентной меди является симметрично удлиненная квадратная бипирамида. Тетраэдрическая координация для меди(П) встречается довольно редко и в соединениях с тиолами, по-видимому, не реализуется.

Большинство комплексов меди(II) имеет октаэдрическую структуру, в которой четыре координационных места заняты лигандами, распо­ложенными к металлу ближе, чем два других лиганда, находящихся выше и ниже металла. Устойчивые комплексы меди(II) характери­зуются, как правило, плоскоквадратной или октаэдрической конфи­гурацией. В предельных случаях деформации октаэдрическая конфигу­рация превращается в плоскоквадратную. Большое аналитическое при­менение имеют внешнесферные комплексы меди.

Страницы: 1 2 3

Смотрите также

Сталь и чугун
...

Что такое вода
...

Планирование дискриминирующих экспериментов
Для дискриминации гипотез используют эксперименты различного типа. Химические эксперименты. Различные тестовые реакции часто позволяют определить вероятность участия того или иного вещес ...