Чудесное топливо будущего

Информация для студентов / Чудесное топливо будущего
Страница 3

Можно найти и скорость, с которой должны столк­нуться атомы, чтобы могла начаться ядерная реакция:

Z1xZ2

V = 5.3

x

108

x

A

У дейтерия атомный номер Z=1. Масса изотопа А = 2, следовательно, скорость атомов должна быть: V = 3,8 x 106 м/с или 3800 км/с, что в 475 раз больше 1-ой кос­мической скорости. При обычной температуре физикам из­вестна средняя скорость теплового движения у атомов дейтерия, она равна всего лишь 1,9 м /с. При комнатной температуре, равной примерно 239 К, кинетическая энер­гия молекул возрастает пропорционально термодинамиче­ской температуре, или, что то же самое, пропорцио­нально квадрату скоро­сти. Следовательно, чтобы средняя скорость молекул дейтерия была достаточной для реакции между ядрами, нужно нагреть тяжелый водород до темпе­ратуры:

38002

Т = 293 х К = 1,2 х 109 К

1,92

Итак, сталкиваться и реагировать между собой могут только ядра дейтерия “нагретые” до температуры свыше миллиарда Кельвинов. Вот в этом то и заключается до­вольно серьезное затруднение для истинных героев науки - физиков.

Весьма заманчива своей дешевизной оказалась идея двигателя внутреннего сгорания, использующего в каче­стве топлива водород. Такой мотор, потребляя водород и воздух, выбрасывает в качестве продукта горения воду.

Американские исследователи Университета штата Окла­хома приспособили для водорода классический бензиновый автомобильный двигатель. Оказалось, что при прямом впрыскивании водорода в цилиндры - как в дизельных двигателях - отпадает надобность в опережении зажига­ния. Как показал анализ выхлопных газов, окислы серы и углерода в них вообще отсутствуют, а окислы азота со­держится лишь в незначительных количествах.

Однако широкому применению водорода в качестве авто­мобильного топлива препятствует немало проблем, и са­мая трудная из них - топливные баки. На 10 кг водорода автомобиль может проехать столько же, сколько на 30 кг бензина, но такое количество газообразного водорода занимает объем 8000 л, а чтобы хранить его требуется прочный резервуар массой 1500 кг. Это натолкнуло кон­структоров на мысль использовать сжиженный водород; тогда те же 10 кг водорода помещаются в баллоне массой 80 кг и емкостью 160 л. Но чтобы иметь водород в сжиженном состоянии, нужно под­держивать в баллоне температуру -2530С. Применять со­суды Дьюара было бы слишком дорого. Возможно, конст­рукторам удастся использовать какие-то варианты широко применяемых в настоящее время резервуаров для хранения жидкого топлива, у которых суточные потери на испаре­ние не превышают 1,5%. Так, в экспериментальном авто­мобиле “Волга” смонтирован криогенный водородный бак общей массой 140 кг. Специалисты нашли и другое реше­ние: бак можно изготовить из гидридов металлов сплавов магния, марганца, титана и железа, которые обладают тем преимуществом, что поглощают часть испаряющегося водорода, а при нагреве (хотя бы выхлопными газами) ­снова выделяют его. Масса водородного бака из гидридов металлов превышает 150 кг.

Новое топливо уже опробовано на практике. Успешно прошел испытания автомобиль “Жигули” с комбинированным двигателем на бензине и водороде. К.П.Д. двигателя по­высился на четверть, расход бензина уменьшился на треть, а содержание вредных веществ в выхлопных газах снизилось до минимума. Большие надежды возлагаются и на электромобили, снабженные водородо-кислотными топ­ливными системами.

По мнению многих специалистов, водородный двигатель вряд ли найдет применение в легковых автомобилях, по соображениям безопасности, но он может пригодиться для общественного транспорта.

Большой интерес к водородному топливу проявляют и авиаконструкторы. В США еще в 1957г. исследовательская группа Национального управления по аэронавтике и ис­следованию космического пространства проводила испыта­ния двухмоторного самолета на водородном топливе. В 1973г. НАСА поручило фирме “Локхид” приспособить для водородного топлива два серийных боевых самолета (С-141 и “Старфайтер”). Фирма “Боинг” разработала вариант крупнейшего самолета “Джамбо-Джет” на водородном топ­ливе.

Страницы: 1 2 3 4 5

Смотрите также

Нитрование ароматических углеводородов. Производство нитро-бензола
            Нитрования – один из важнейших процессов в химической промышленности. Продукты, получаемые за счёт нитрования, являются полуфабрикатами для производства многих товаров различных ...

Химия гидразина
Химия гидразина изучается уже почти три четверти века. До 1875 г. были известны только симметричные дизамещенные гидразина— гидразосоединения. В 1875 г. Э. Фишер, исследуя процесс восстановлен ...

Бензол как растворитель
...