Удельная и молярная электропроводности электролитов.
Электрическая проводимость растворов электролитов, т.е. способность их проводить электрический ток, зависит от природы электролита и растворителя, концентрации, температуры и некоторых других факторов. Различают удельную и молярную электрическую проводимости.
Удельная электрическая проводимость раствора электролита x – это электрическая проводимость объема раствора, заключенного между двумя параллельными электродами, имеющими площадь по одному квадратному метру и расположенными на расстоянии одного метра друг от друга.
Удельная электрическая проводимость является величиной, обратной удельному сопротивлению ρ:
(1)
Удельное сопротивление определяется по уравнению
(2)
где R — общее сопротивление проводника. Ом; l — длина проводника, м; s — поперечное сечение проводника, м2. Из уравнения (2) имеем:
ρ=Rs/l. (3)
Полученное выражение показывает, что размерность, т. е. единица удельного сопротивления, выражается величиной [ρ]=0м м.
Единица удельной электрической проводимости, т. е. размерность ее, выражается обратной величиной x=1/(0м м) = Oм-l•м-l = Cм м-1.
Повышение температуры на 1 К увеличивает удельную электрическую проводимость примерно на 2 - 2,5%. Это объясняется понижением вязкости раствора и уменьшением гидратации ионов, а для растворов слабых электролитов увеличением их степени диссоциации.
Зависимость удельной электрической проводимости разбавленных растворов от температуры описывается эмпирическим уравнением
xT = x298 [1 + α (T - 298) +β (Т- 298)2];
(4)
β = 0,0163 (α - 0,0174),
где x298 – удельная электрическая проводимость при 298 К; α и β - температурные коэффициенты электрической проводимости. Коэффициенты α и β зависят от природы электролита: для сильных кислот α = 0,0164, для сильных оснований α = 0,0190, для солей α = 0,0220.
В растворах слабых электролитов диссоциация молекул электролита на ионы увеличивает объем раствора. Поэтому повышение давления в соответствии с принципом смещения подвижного равновесия Ле Шателье – Брауна уменьшает степень диссоциации электролита и, следовательно, электрическую проводимость. Заметное влияние на электрическую проводимость раствора слабого электролита оказывает только давление порядка сотен и тысяч атмосфер. Например, повышение давления до 2000 атм уменьшает x для уксусной кислоты на 40%.
При изучении электрической проводимости растворов целесообразно пользоваться молярной электрической проводимостью Λ, которая равна электрической проводимости объема раствора электролита, содержащего 1 г/моль растворенного вещества и находящегося между двумя параллельными электродами, расположенными на расстоянии одного метра друг от друга. Для слабых электролитов изменение молярной электрической проводимости от концентрации раствора связано в основном со степенью диссоциации и для сильных электролитов - с межионным взаимодействием.
Удельная и молярная электрические проводимости связаны между собой соотношением:
Λ = xVм = x/cм (5)
где Vм — число кубометров раствора, содержащего 1 г/моль электролита; См — концентрация электролита, выраженная в моль/м3. Для практических расчетов можно использовать также размерности в производных единицах СИ: [χ]=См см-1; [Λ] = См см2 •моль-1; [с] = моль/л (моль/дм3). При этом вместо уравнения (5) получаем:
(6)
При вычислении молярной электрической проводимости нужно указывать формульную единицу, для которой она вычислена. Так, например, при 298 К в водном растворе при предельном разбавлении A(MgCl2)=258 · 104 См м2 • моль-1, но Λ (MgCl2) = 129 • 104
См • м2 моль-1.
Молярная электрическая проводимость с уменьшением концентрации раствора увеличивается и при с → 0 стремится к некоторому предельному максимальному значению Λ∞, которое называется молярной электрической проводимостью при предельном (бесконечном) разбавлении. Например, для предельно разбавленных растворов НС1, КС1 и NH4OH значения Λ∞,при 298 К соответственно равны 426 · 104; 149,8 104 и 271,4 104 См м2 моль-1.
Зависимость молярной электрической проводимости от температуры можно представить уравнением:
ΛТ = Λ298 [1+α (T-298)], (7)
где ΛТ и Λ298 — молярные электрические проводимости при температуре Т = 298 К; α — температурный коэффициент электрической проводимости. Уравнение (7) справедливо для узкого интервала температур. Логарифмируя уравнение (6), получаем:
(8)
Беря производную по температуре от уравнения (8), находим:
, или (9)
Из уравнения (9) следует, что температурные коэффициенты удельной и молярной электрической проводимости одинаковы.
Рассмотрим зависимость молярной электрической проводимости раствора бинарного электролита от скорости движения ионов. Пусть электрический ток проходит через раствор бинарного электролита, помещенный в стеклянную трубку с поперечным сечением s м2, причем расстояние между электродами равно l м и разность потенциалов между ними равна Е В. Обозначим через u'+ и u'- скорости движения катионов и анионов, м/с, а через см концентрацию раствора электролита, г/моль/м3. Если степень диссоциации электролита в данном растворе равна α, то концентрации катионов и анионов равны αсм г/моль/м3. Подсчитаем количество электричества, которое переносится через поперечное сечение трубки за 1 с. Катионов за это время пройдет через сечение u'+sαcм г/моль и они перенесут u'+sαcмF Кл электричества, так как г/моль переносит количество электричества, равное числу Фарадея F. Анионы в обратном направлении перенесут u'-sαcмF Кл электричества. Сила тока I, т. е. общее количество электричества, проходящее через данное поперечное сечение раствора в 1 с, равна сумме количеств электричества, переносимого ионами в обоих направлениях:
Смотрите также
Пиразолы, тетразолы и триазолы
...
Синтез твердых растворов и исследования низкотемпературных фазовых превращений
В последнее время
наблюдается усиленный интерес к исследованиям твердофазных процессов с
применением ионных электролитов. Для этих исследований имеет большое значение создание
твердых элект ...
Водород
...