Пространственно-затрудненные фенолы и стабилизация полимерных материалов. Старение полимеров

Информация для студентов / Несимметричные сульфиды / Пространственно-затрудненные фенолы и стабилизация полимерных материалов. Старение полимеров

Полимерные материалы в значительной мере подвержены воздействию условий окружающей среды (свет, тепло, действие озона, радиация, механические нагрузки).Под влиянием этих факторов снижается эластичность, ухудшается электроизоляционные свойства и др. Эти явления, называемые в совокупности старением, приводят к необратимым изменениям свойств полимерных материалов и сокращают срок службы изделий из них. При эксплуатации большинство полимеров находится в контакте с кислородом воздуха, т.е. в окислительной среде. Реакции окислительной деструкции являются наиболее распространенными из реакций, протекающих при старении в естественных условиях, и представляют собой радикально-цепной окислительный процесс. Этот процесс активируется различными внешними воздействиями – тепловым, радиационным, механическим, химическим. Характерная особенность радикально-цепных окислительных процессов – возможность их резкого замедления путем введения небольшого количества ингибитора (стабилизатора).

Выделяют следующие типы стабилизаторов:

· антиоксиданты или антиокислители (защищающие полимерные вещества от разрушающего действия кислорода);

· антиозонаты (защищающие полимерные вещества от разрушающего действия озона);

· светостабилизаторы (защищающие полимерные вещества от разрушающего действия ультрафиолетовых лучей);

· термостабилизаторы (защищающие полимерные вещества от разрушающего действия высокой температуры);

· антирады (защищающие полимерные вещества от разрушающего действия радиационного излучения).

Как известно, основу макромолекулы большинства полимеров общего назначения составляет углеродная цепь типа:

где: R = H, alk, ar.

В общем виде механизм ингибированного окисления углеводородов молекулярным кислородом может быть представлен следующей схемой:

Механизм ингибированного окисления углеводородов молекулярным кислородом

(0) RH ® R•

(1) R• + O2 ® ROO•

(2) ROO• + RH ® ROOH + R•

(3) ROOH ® RO• + HO•

(4) R• + R• ® R-R

(5) ROO• + R• ® ROOR

(6) ROO• + ROO• ® ROH + R"COR + O2

(7) ROO• + InH ® ROOH + In•

(8) In• + RH ® InH + R•

(9) In• + In• ® In-In

(10) In• + ROO• ® InOOR

В целом процесс окисления зависит от величины константы скорости реакции продолжения цепи (k2) и концентрации перекисных радикалов. Соответствующие гидроперекиси являются первичными продуктами окисления, дальнейший распад которых приводит к различным кислородсодержащим веществам и часто сопровождается разрывом углерод-углеродной цепи.

Присутствующий в окисляющейся системе ингибитор (InH), как правило, реагирует c радикалами ROO• (реакция 7), либо прерывая цепь окисления, либо уменьшая концентрацию этих радикалов, что приводит к снижению скорости окисления. Естественно, что чем менее активен получающийся из ингибитора радикал, тем меньше вероятность протекания реакции 8. Следовательно, тормозящее действие любого ингибитора окисления зависит, с одной стороны, от скорости реакции перекисных радикалов с ингибитором, а с другой – от активности получающегося из ингибиторов радикала. Малоактивные радикалы In• обычно не способны продолжать цепь (реакция 8) и рекомбинируют друг с другом (реакция 9). Таким образом, относительная активность радикала In• непосредственно в процессе окисления должна определяться отношением констант скоростей реакций k2/k7, которое характеризует максимальную возможность торможения процесса окисления при использовании данного ингибитора (сила ингибитора). Чем меньше это отношение, тем больше возможное тормозящее действие ингибитора.

Смотрите также

Влияние температуры на скорость химической реакции
...

Взаимодействия в коллоидных системах
...

Платиновые металлы
...