Атомизаторы и источники возбуждения в аналитической химии

Информация для студентов / Атомизаторы и источники возбуждения в аналитической химии
Страница 1

Источники возбуждения и атомизации в спектральном анализе

Атомизацию, как источник возбуждения, используют в атомно-адсорбционной спектроскопии. Существует много способов атомизации соединений , осуществляемых в большинстве случаев за счет тепловой энер­гии электричества или пламени. Для оптимального перехода в атомный пар необходим строгий контроль за температурой. Слишком высокая температура может быть так же неблаго­приятна, как и слишком низкая, потому что часть атомов иони­зируется и, следовательно, не поглощает при ожидаемых дли­нах волн. Но, с другой стороны, высокая температура способ­ствует снижению влияния матрицы, поэтому следует найти компромисс между этими температурами.

В атомной эмиссионной спектроскопии используют более мощные источники возбуждения. Как известно свободный атом может принимать энергию от внешнего источника и возбуждаться; это означает, что один из его электронов переходит с основного на более высокий энергетический уровень. Возвращаясь в основное состояние, атом испускает фотон с энергией, соответствующей определенной частоте или длине волны. На практике существует несколько способов возбуждения, из которых наибольшее значение имеют электрические дуга и искра, пламя, электрогенеризованная плазма в газе-носителе. Разберем каждый из этих способов.

Пламенная атомизация

. На рис.1 изображена горелка, используемая в пламенной атомно-абсорбционной спектроско­пии (ААС). Горючий газ и газ-окислитель подаются в смеси­тельную камеру, где они проходят через

Рис. 1. Горелка с предварительным смешением газов и безвихревым пото­ком для ААС.

ряд перегородок, обеспечивающих их полное смешение, и поступают в верхнюю часть горелки. Отверстие горелки имеет форму длинной узкой щели, что позволяет получить пламя в виде узкой полосы. Анализи­руемый раствор засасывается в смесительную камеру с по­мощью небольшой воздушной форсунки. При использовании такого распылителя получаются капельки разного размера, что может быть причиной плохой воспроизводимости. При прохож­дении через перегородки смесителя более крупные капли за­держиваются, так что в пламя попадают более мелкие одно­родные по размеру капли.

Горелка с предварительным смешением газов не вполне безопасна в работе, потому что, если пламя попадет в смеси­тельную камеру, произойдет сильный взрыв. Для того чтобы свести к минимуму вероятность проскакивания пламени в ка­меру, щель горелки нужно сделать как можно более узкой (с тем чтобы газы продувались сквозь нее с большой скоро­стью), а металлический обод вокруг щели как можно массив­нее, так чтобы тепло легко отводилось. Но даже в этом случае, если не регулировать газовый поток должным образом, взрыв возможен. В продажных горелках предусмотрены меры без­опасности при проскакивании пламени в камеру. При эксплуа­тации горелки всегда необходимо строго соблюдать правила техники безопасности.

В качестве окислительного и горючего газов в ААС чаще всего выбирают сжатый воздух и ацетилен. Максимально до­стигаемая температура составляет около 2200 °С. Если нужна более высокая температура, воздух можно заменить оксидом азота (N2O), -который разлагается с образованием смеси азота и кислорода в соотношении 2:1, тогда как для сжатого воз­духа это соотношение равно 4:1; максимальная температура, которую можно получить при горении ацетилена, составляет почти 3000 °С. В горелках с предварительным смешением га­зов нельзя использовать чистый кислород, поскольку пламя распространяется так стремительно, что проскок в камеру не­избежен.

Страницы: 1 2 3 4 5

Смотрите также

Химия и запахи
...

Элементы теории катализа
...

Полимерные материалы, пластмассы
...